Calcul infinitésimal Exemples

Encontre a Derivada de 2nd y=xe^x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 1.3
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.2
Multipliez par .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.4
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Additionnez et .
Étape 2.4.2
Remettez les termes dans l’ordre.
Étape 2.4.3
Remettez les facteurs dans l’ordre dans .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.4
Multipliez par .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Additionnez et .
Étape 3.4.2
Remettez les termes dans l’ordre.
Étape 3.4.3
Remettez les facteurs dans l’ordre dans .
Étape 4
Déterminez la dérivée quatrième.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 4.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 4.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.4
Multipliez par .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 4.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Additionnez et .
Étape 4.4.2
Remettez les termes dans l’ordre.
Étape 4.4.3
Remettez les facteurs dans l’ordre dans .