Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Étape 2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Réécrivez comme .
Étape 2.5
Remettez les termes dans l’ordre.
Étape 3
Étape 3.1
Différenciez.
Étape 3.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2
Évaluez .
Étape 3.2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.4
Multipliez par .
Étape 3.3
Remettez les termes dans l’ordre.
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Étape 5.1
Simplifiez le côté gauche.
Étape 5.1.1
Remettez les facteurs dans l’ordre dans .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Soustrayez des deux côtés de l’équation.
Étape 5.4
Factorisez à partir de .
Étape 5.4.1
Factorisez à partir de .
Étape 5.4.2
Factorisez à partir de .
Étape 5.4.3
Factorisez à partir de .
Étape 5.5
Divisez chaque terme dans par et simplifiez.
Étape 5.5.1
Divisez chaque terme dans par .
Étape 5.5.2
Simplifiez le côté gauche.
Étape 5.5.2.1
Annulez le facteur commun de .
Étape 5.5.2.1.1
Annulez le facteur commun.
Étape 5.5.2.1.2
Divisez par .
Étape 5.5.3
Simplifiez le côté droit.
Étape 5.5.3.1
Placez le signe moins devant la fraction.
Étape 5.5.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 5.5.3.3
Associez les numérateurs sur le dénominateur commun.
Étape 6
Remplacez par.