Calcul infinitésimal Exemples

Encontre a Derivada - d/d@VAR f(x)=(4x^4+7x^3-3x^2-4x+5)/(x^3)
Étape 1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.2
Multipliez par .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.5
Multipliez par .
Étape 2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.8
Multipliez par .
Étape 2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.10
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.11
Multipliez par .
Étape 2.12
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.13
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.14
Multipliez par .
Étape 2.15
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.16
Additionnez et .
Étape 2.17
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.18
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 2.18.1
Multipliez par .
Étape 2.18.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.18.2.1
Factorisez à partir de .
Étape 2.18.2.2
Factorisez à partir de .
Étape 2.18.2.3
Factorisez à partir de .
Étape 3
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Étape 3.2
Annulez le facteur commun.
Étape 3.3
Réécrivez l’expression.
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Appliquez la propriété distributive.
Étape 4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.3.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.2.1
Déplacez .
Étape 4.3.1.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.2.2.1
Élevez à la puissance .
Étape 4.3.1.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.1.2.3
Additionnez et .
Étape 4.3.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.3.1.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.4.1
Déplacez .
Étape 4.3.1.4.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.4.2.1
Élevez à la puissance .
Étape 4.3.1.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.1.4.3
Additionnez et .
Étape 4.3.1.5
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.3.1.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.6.1
Déplacez .
Étape 4.3.1.6.2
Multipliez par .
Étape 4.3.1.7
Déplacez à gauche de .
Étape 4.3.1.8
Multipliez par .
Étape 4.3.1.9
Multipliez par .
Étape 4.3.1.10
Multipliez par .
Étape 4.3.1.11
Multipliez par .
Étape 4.3.1.12
Multipliez par .
Étape 4.3.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Soustrayez de .
Étape 4.3.2.2
Additionnez et .
Étape 4.3.3
Soustrayez de .
Étape 4.3.4
Additionnez et .
Étape 4.3.5
Additionnez et .