Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étudiez la formule des quotients différentiels.
Étape 2
Étape 2.1
Évaluez la fonction sur .
Étape 2.1.1
Remplacez la variable par dans l’expression.
Étape 2.1.2
Simplifiez le résultat.
Étape 2.1.2.1
Réécrivez comme .
Étape 2.1.2.2
Développez à l’aide de la méthode FOIL.
Étape 2.1.2.2.1
Appliquez la propriété distributive.
Étape 2.1.2.2.2
Appliquez la propriété distributive.
Étape 2.1.2.2.3
Appliquez la propriété distributive.
Étape 2.1.2.3
Simplifiez et associez les termes similaires.
Étape 2.1.2.3.1
Simplifiez chaque terme.
Étape 2.1.2.3.1.1
Multipliez par .
Étape 2.1.2.3.1.2
Multipliez par .
Étape 2.1.2.3.2
Additionnez et .
Étape 2.1.2.3.2.1
Remettez dans l’ordre et .
Étape 2.1.2.3.2.2
Additionnez et .
Étape 2.1.2.4
Appliquez la propriété distributive.
Étape 2.1.2.5
Multipliez par .
Étape 2.1.2.6
La réponse finale est .
Étape 2.2
Remettez dans l’ordre.
Étape 2.2.1
Déplacez .
Étape 2.2.2
Remettez dans l’ordre et .
Étape 2.3
Déterminez les composants de la définition.
Étape 3
Insérez les composants.
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Soustrayez de .
Étape 4.1.3
Additionnez et .
Étape 4.1.4
Factorisez à partir de .
Étape 4.1.4.1
Factorisez à partir de .
Étape 4.1.4.2
Factorisez à partir de .
Étape 4.1.4.3
Factorisez à partir de .
Étape 4.2
Simplifiez les termes.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.2.2
Appliquez la propriété distributive.
Étape 4.2.3
Simplifiez l’expression.
Étape 4.2.3.1
Multipliez par .
Étape 4.2.3.2
Remettez dans l’ordre et .
Étape 5