Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x) = natural log of x^4+27
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Additionnez et .
Étape 1.2.4.2
Associez et .
Étape 1.2.4.3
Associez et .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.2
Déplacez à gauche de .
Étape 2.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.6.1
Additionnez et .
Étape 2.3.6.2
Multipliez par .
Étape 2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Déplacez .
Étape 2.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.4.3
Additionnez et .
Étape 2.5
Associez et .
Étape 2.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Appliquez la propriété distributive.
Étape 2.6.2
Appliquez la propriété distributive.
Étape 2.6.3
Appliquez la propriété distributive.
Étape 2.6.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.4.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.4.1.1.1
Déplacez .
Étape 2.6.4.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.6.4.1.1.3
Additionnez et .
Étape 2.6.4.1.2
Multipliez par .
Étape 2.6.4.1.3
Multipliez par .
Étape 2.6.4.1.4
Multipliez par .
Étape 2.6.4.1.5
Multipliez par .
Étape 2.6.4.2
Soustrayez de .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.1.1.2
La dérivée de par rapport à est .
Étape 4.1.1.3
Remplacez toutes les occurrences de par .
Étape 4.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.4
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.4.1
Additionnez et .
Étape 4.1.2.4.2
Associez et .
Étape 4.1.2.4.3
Associez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Définissez le numérateur égal à zéro.
Étape 5.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1
Divisez chaque terme dans par .
Étape 5.3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.2.1.1
Annulez le facteur commun.
Étape 5.3.1.2.1.2
Divisez par .
Étape 5.3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.3.1
Divisez par .
Étape 5.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5.3.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Réécrivez comme .
Étape 5.3.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 6
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
L’élévation de à toute puissance positive produit .
Étape 9.1.2
Multipliez par .
Étape 9.1.3
L’élévation de à toute puissance positive produit .
Étape 9.1.4
Multipliez par .
Étape 9.1.5
Additionnez et .
Étape 9.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
L’élévation de à toute puissance positive produit .
Étape 9.2.2
Additionnez et .
Étape 9.2.3
Élevez à la puissance .
Étape 9.3
Divisez par .
Étape 10
Comme il y a au moins un point avec ou une dérivée seconde indéfinie, appliquez le test de la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 10.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Remplacez la variable par dans l’expression.
Étape 10.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Élevez à la puissance .
Étape 10.2.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.2.1
Élevez à la puissance .
Étape 10.2.2.2.2
Additionnez et .
Étape 10.2.2.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.3.1
Multipliez par .
Étape 10.2.2.3.2
Placez le signe moins devant la fraction.
Étape 10.2.2.4
La réponse finale est .
Étape 10.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.1
Remplacez la variable par dans l’expression.
Étape 10.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.2.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.2.1.1
Réécrivez comme .
Étape 10.3.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 10.3.2.1.3
Additionnez et .
Étape 10.3.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.2.2.1
Élevez à la puissance .
Étape 10.3.2.2.2
Additionnez et .
Étape 10.3.2.3
Élevez à la puissance .
Étape 10.3.2.4
La réponse finale est .
Étape 10.4
Comme la dérivée première a changé de signe de négative à positive autour de , est un minimum local.
est un minimum local
est un minimum local
Étape 11