Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de xarcsin(x) par rapport à x
Étape 1
Intégrez par parties en utilisant la formule , où et .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 2.2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Associez et .
Étape 5
Laissez , où . Puis . Depuis , est positif.
Étape 6
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Appliquez l’identité pythagoricienne.
Étape 6.1.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Annulez le facteur commun.
Étape 6.2.2
Réécrivez l’expression.
Étape 7
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Multipliez par .
Étape 10
Séparez l’intégrale unique en plusieurs intégrales.
Étape 11
Appliquez la règle de la constante.
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 13.1.1
Différenciez .
Étape 13.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 13.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 13.1.4
Multipliez par .
Étape 13.2
Réécrivez le problème en utilisant et .
Étape 14
Associez et .
Étape 15
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 16
L’intégrale de par rapport à est .
Étape 17
Simplifiez
Étape 18
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 18.1
Remplacez toutes les occurrences de par .
Étape 18.2
Remplacez toutes les occurrences de par .
Étape 18.3
Remplacez toutes les occurrences de par .
Étape 19
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 19.1
Associez et .
Étape 19.2
Appliquez la propriété distributive.
Étape 19.3
Associez et .
Étape 19.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 19.4.1
Multipliez par .
Étape 19.4.2
Multipliez par .
Étape 19.4.3
Multipliez par .
Étape 19.4.4
Multipliez par .
Étape 19.5
Associez et .
Étape 19.6
Associez et .
Étape 20
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 20.1
Remettez les facteurs dans l’ordre dans .
Étape 20.2
Remettez les termes dans l’ordre.