Calcul infinitésimal Exemples

Déterminer la concavité f(x)=x/(x^2+1)
Étape 1
Find the values where the second derivative is equal to .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.2.2
Multipliez par .
Étape 1.1.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.6.1
Additionnez et .
Étape 1.1.1.2.6.2
Multipliez par .
Étape 1.1.1.3
Élevez à la puissance .
Étape 1.1.1.4
Élevez à la puissance .
Étape 1.1.1.5
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.1.6
Additionnez et .
Étape 1.1.1.7
Soustrayez de .
Étape 1.1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.1.2.2.1.2
Multipliez par .
Étape 1.1.2.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.2.5
Multipliez par .
Étape 1.1.2.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2.7
Additionnez et .
Étape 1.1.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3.3
Remplacez toutes les occurrences de par .
Étape 1.1.2.4
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.4.1
Multipliez par .
Étape 1.1.2.4.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.4.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.4.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.4.5.1
Additionnez et .
Étape 1.1.2.4.5.2
Déplacez à gauche de .
Étape 1.1.2.4.5.3
Multipliez par .
Étape 1.1.2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.1
Appliquez la propriété distributive.
Étape 1.1.2.5.2
Appliquez la propriété distributive.
Étape 1.1.2.5.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.2.5.3.1.2
Réécrivez comme .
Étape 1.1.2.5.3.1.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.3.1
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.3.2
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.3.3
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.4
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.4.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.4.1.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.4.1.1.2
Additionnez et .
Étape 1.1.2.5.3.1.4.1.2
Multipliez par .
Étape 1.1.2.5.3.1.4.1.3
Multipliez par .
Étape 1.1.2.5.3.1.4.1.4
Multipliez par .
Étape 1.1.2.5.3.1.4.2
Additionnez et .
Étape 1.1.2.5.3.1.5
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.6.1
Multipliez par .
Étape 1.1.2.5.3.1.6.2
Multipliez par .
Étape 1.1.2.5.3.1.7
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.8
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.8.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.8.1.1
Déplacez .
Étape 1.1.2.5.3.1.8.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.8.1.2.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.8.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.8.1.3
Additionnez et .
Étape 1.1.2.5.3.1.8.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.8.2.1
Déplacez .
Étape 1.1.2.5.3.1.8.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.8.2.2.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.8.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.8.2.3
Additionnez et .
Étape 1.1.2.5.3.1.9
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.9.1
Multipliez par .
Étape 1.1.2.5.3.1.9.2
Multipliez par .
Étape 1.1.2.5.3.1.10
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.10.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.10.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.10.1.1.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.10.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.10.1.2
Additionnez et .
Étape 1.1.2.5.3.1.10.2
Multipliez par .
Étape 1.1.2.5.3.1.11
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.11.1
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.11.2
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.11.3
Appliquez la propriété distributive.
Étape 1.1.2.5.3.1.12
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.12.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.12.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.12.1.1.1
Déplacez .
Étape 1.1.2.5.3.1.12.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.12.1.1.3
Additionnez et .
Étape 1.1.2.5.3.1.12.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.12.1.2.1
Déplacez .
Étape 1.1.2.5.3.1.12.1.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.3.1.12.1.2.2.1
Élevez à la puissance .
Étape 1.1.2.5.3.1.12.1.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.2.5.3.1.12.1.2.3
Additionnez et .
Étape 1.1.2.5.3.1.12.2
Soustrayez de .
Étape 1.1.2.5.3.1.12.3
Additionnez et .
Étape 1.1.2.5.3.2
Additionnez et .
Étape 1.1.2.5.3.3
Soustrayez de .
Étape 1.1.2.5.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.4.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.4.1.1
Factorisez à partir de .
Étape 1.1.2.5.4.1.2
Factorisez à partir de .
Étape 1.1.2.5.4.1.3
Factorisez à partir de .
Étape 1.1.2.5.4.1.4
Factorisez à partir de .
Étape 1.1.2.5.4.1.5
Factorisez à partir de .
Étape 1.1.2.5.4.2
Réécrivez comme .
Étape 1.1.2.5.4.3
Laissez . Remplacez toutes les occurrences de par .
Étape 1.1.2.5.4.4
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.4.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.1.2.5.4.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.1.2.5.4.5
Remplacez toutes les occurrences de par .
Étape 1.1.2.5.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.5.1
Factorisez à partir de .
Étape 1.1.2.5.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.5.2.1
Factorisez à partir de .
Étape 1.1.2.5.5.2.2
Annulez le facteur commun.
Étape 1.1.2.5.5.2.3
Réécrivez l’expression.
Étape 1.1.3
La dérivée seconde de par rapport à est .
Étape 1.2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez la dérivée seconde égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 1.2.3.2
Définissez égal à .
Étape 1.2.3.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.3.1
Définissez égal à .
Étape 1.2.3.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.2.3.3.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.3.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.3.3.2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.3.3.2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 2
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.2.3
Réécrivez comme .
Étape 2.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.3
Le domaine est l’ensemble des nombres réels.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Créez des intervalles autour des valeurs où la dérivée seconde est nulle ou indéfinie.
Étape 4
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Multipliez par .
Étape 4.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Élevez à la puissance .
Étape 4.2.2.2
Additionnez et .
Étape 4.2.2.3
Élevez à la puissance .
Étape 4.2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Élevez à la puissance .
Étape 4.2.3.2
Soustrayez de .
Étape 4.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Multipliez par .
Étape 4.2.4.2
Placez le signe moins devant la fraction.
Étape 4.2.5
La réponse finale est .
Étape 4.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 5
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Multipliez par .
Étape 5.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Élevez à la puissance .
Étape 5.2.2.2
Additionnez et .
Étape 5.2.2.3
Élevez à la puissance .
Étape 5.2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Élevez à la puissance .
Étape 5.2.3.2
Soustrayez de .
Étape 5.2.4
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.1
Multipliez par .
Étape 5.2.4.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.2.1
Factorisez à partir de .
Étape 5.2.4.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.2.2.1
Factorisez à partir de .
Étape 5.2.4.2.2.2
Annulez le facteur commun.
Étape 5.2.4.2.2.3
Réécrivez l’expression.
Étape 5.2.5
La réponse finale est .
Étape 5.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 6
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Multipliez par .
Étape 6.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Un à n’importe quelle puissance est égal à un.
Étape 6.2.2.2
Additionnez et .
Étape 6.2.2.3
Élevez à la puissance .
Étape 6.2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Un à n’importe quelle puissance est égal à un.
Étape 6.2.3.2
Soustrayez de .
Étape 6.2.4
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.4.1
Multipliez par .
Étape 6.2.4.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.4.2.1
Factorisez à partir de .
Étape 6.2.4.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.4.2.2.1
Factorisez à partir de .
Étape 6.2.4.2.2.2
Annulez le facteur commun.
Étape 6.2.4.2.2.3
Réécrivez l’expression.
Étape 6.2.4.3
Placez le signe moins devant la fraction.
Étape 6.2.5
La réponse finale est .
Étape 6.3
Le graphe est concave vers le bas sur l’intervalle car est négatif.
Concave vers le bas sur car est négatif
Concave vers le bas sur car est négatif
Étape 7
Remplacez tout nombre du premier intervalle dans la dérivée seconde et évaluez afin de déterminer la concavité.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Multipliez par .
Étape 7.2.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Élevez à la puissance .
Étape 7.2.2.2
Additionnez et .
Étape 7.2.2.3
Élevez à la puissance .
Étape 7.2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.3.1
Élevez à la puissance .
Étape 7.2.3.2
Soustrayez de .
Étape 7.2.4
Multipliez par .
Étape 7.2.5
La réponse finale est .
Étape 7.3
Le graphe est concave vers le haut sur l’intervalle car est positif.
Concave vers le haut sur car est positif
Concave vers le haut sur car est positif
Étape 8
Le graphe est concave vers le bas lorsque la dérivée seconde est négative et concave vers le haut lorsque la dérivée seconde est positive.
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Concave vers le bas sur car est négatif
Concave vers le haut sur car est positif
Étape 9