Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux y=x^3-6x^2-135x
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Multipliez par .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3
Multipliez par .
Étape 3.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
Additionnez et .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.3
Multipliez par .
Étape 5.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.3.3
Multipliez par .
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Factorisez à partir de .
Étape 6.2.1.2
Factorisez à partir de .
Étape 6.2.1.3
Factorisez à partir de .
Étape 6.2.1.4
Factorisez à partir de .
Étape 6.2.1.5
Factorisez à partir de .
Étape 6.2.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.2.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 6.2.2.2
Supprimez les parenthèses inutiles.
Étape 6.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Définissez égal à .
Étape 6.4.2
Ajoutez aux deux côtés de l’équation.
Étape 6.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Définissez égal à .
Étape 6.5.2
Soustrayez des deux côtés de l’équation.
Étape 6.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Multipliez par .
Étape 10.2
Soustrayez de .
Étape 11
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 12
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Élevez à la puissance .
Étape 12.2.1.2
Élevez à la puissance .
Étape 12.2.1.3
Multipliez par .
Étape 12.2.1.4
Multipliez par .
Étape 12.2.2
Simplifiez en soustrayant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.2.1
Soustrayez de .
Étape 12.2.2.2
Soustrayez de .
Étape 12.2.3
La réponse finale est .
Étape 13
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 14
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Multipliez par .
Étape 14.2
Soustrayez de .
Étape 15
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 16
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Remplacez la variable par dans l’expression.
Étape 16.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1.1
Élevez à la puissance .
Étape 16.2.1.2
Élevez à la puissance .
Étape 16.2.1.3
Multipliez par .
Étape 16.2.1.4
Multipliez par .
Étape 16.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.2.1
Soustrayez de .
Étape 16.2.2.2
Additionnez et .
Étape 16.2.3
La réponse finale est .
Étape 17
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 18