Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3
Associez et .
Étape 1.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.5
Simplifiez le numérateur.
Étape 1.1.5.1
Multipliez par .
Étape 1.1.5.2
Soustrayez de .
Étape 1.1.6
Associez les fractions.
Étape 1.1.6.1
Placez le signe moins devant la fraction.
Étape 1.1.6.2
Associez et .
Étape 1.1.6.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.1.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.10
Associez les fractions.
Étape 1.1.10.1
Additionnez et .
Étape 1.1.10.2
Associez et .
Étape 1.1.10.3
Multipliez par .
Étape 1.1.10.4
Associez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Divisez par .
Étape 3
Étape 3.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Étape 3.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 3.1.2
Toute valeur élevée à est la base elle-même.
Étape 3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.3
Résolvez .
Étape 3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 3.3.2
Simplifiez chaque côté de l’équation.
Étape 3.3.2.1
Utilisez pour réécrire comme .
Étape 3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.2.2.1
Simplifiez .
Étape 3.3.2.2.1.1
Appliquez la règle de produit à .
Étape 3.3.2.2.1.2
Élevez à la puissance .
Étape 3.3.2.2.1.3
Multipliez les exposants dans .
Étape 3.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.2.1.3.2
Annulez le facteur commun de .
Étape 3.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 3.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 3.3.2.2.1.4
Simplifiez
Étape 3.3.2.2.1.5
Appliquez la propriété distributive.
Étape 3.3.2.2.1.6
Multipliez par .
Étape 3.3.2.3
Simplifiez le côté droit.
Étape 3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 3.3.3
Résolvez .
Étape 3.3.3.1
Ajoutez aux deux côtés de l’équation.
Étape 3.3.3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.3.3.2.1
Divisez chaque terme dans par .
Étape 3.3.3.2.2
Simplifiez le côté gauche.
Étape 3.3.3.2.2.1
Annulez le facteur commun de .
Étape 3.3.3.2.2.1.1
Annulez le facteur commun.
Étape 3.3.3.2.2.1.2
Divisez par .
Étape 3.3.3.2.3
Simplifiez le côté droit.
Étape 3.3.3.2.3.1
Divisez par .
Étape 3.3.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.3.3.4
Simplifiez .
Étape 3.3.3.4.1
Réécrivez comme .
Étape 3.3.3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.3.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.3.3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.3.3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.3.3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.4
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2.2
Soustrayez de .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Étape 4.2.2.1
Simplifiez l’expression.
Étape 4.2.2.1.1
Élevez à la puissance .
Étape 4.2.2.1.2
Soustrayez de .
Étape 4.2.2.1.3
Réécrivez comme .
Étape 4.2.2.1.4
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.2
Annulez le facteur commun de .
Étape 4.2.2.2.1
Annulez le facteur commun.
Étape 4.2.2.2.2
Réécrivez l’expression.
Étape 4.2.2.3
L’élévation de à toute puissance positive produit .
Étape 4.3
Évaluez sur .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez
Étape 4.3.2.1
Simplifiez l’expression.
Étape 4.3.2.1.1
Élevez à la puissance .
Étape 4.3.2.1.2
Soustrayez de .
Étape 4.3.2.1.3
Réécrivez comme .
Étape 4.3.2.1.4
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.2.2
Annulez le facteur commun de .
Étape 4.3.2.2.1
Annulez le facteur commun.
Étape 4.3.2.2.2
Réécrivez l’expression.
Étape 4.3.2.3
L’élévation de à toute puissance positive produit .
Étape 4.4
Indiquez tous les points.
Étape 5