Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.3
Factorisez à partir de .
Étape 1.3.1
Factorisez à partir de .
Étape 1.3.2
Factorisez à partir de .
Étape 1.3.3
Factorisez à partir de .
Étape 1.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2
Set each solution of as a function of .
Étape 3
Étape 3.1
Différenciez les deux côtés de l’équation.
Étape 3.2
Différenciez le côté gauche de l’équation.
Étape 3.2.1
Différenciez.
Étape 3.2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.2
Évaluez .
Étape 3.2.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.2.2.1.3
Remplacez toutes les occurrences de par .
Étape 3.2.2.2
Réécrivez comme .
Étape 3.2.3
Remettez les termes dans l’ordre.
Étape 3.3
Différenciez le côté droit de l’équation.
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.3
Multipliez par .
Étape 3.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 3.5
Résolvez .
Étape 3.5.1
Soustrayez des deux côtés de l’équation.
Étape 3.5.2
Divisez chaque terme dans par et simplifiez.
Étape 3.5.2.1
Divisez chaque terme dans par .
Étape 3.5.2.2
Simplifiez le côté gauche.
Étape 3.5.2.2.1
Annulez le facteur commun de .
Étape 3.5.2.2.1.1
Annulez le facteur commun.
Étape 3.5.2.2.1.2
Réécrivez l’expression.
Étape 3.5.2.2.2
Annulez le facteur commun de .
Étape 3.5.2.2.2.1
Annulez le facteur commun.
Étape 3.5.2.2.2.2
Divisez par .
Étape 3.5.2.3
Simplifiez le côté droit.
Étape 3.5.2.3.1
Simplifiez chaque terme.
Étape 3.5.2.3.1.1
Annulez le facteur commun à et .
Étape 3.5.2.3.1.1.1
Factorisez à partir de .
Étape 3.5.2.3.1.1.2
Annulez les facteurs communs.
Étape 3.5.2.3.1.1.2.1
Factorisez à partir de .
Étape 3.5.2.3.1.1.2.2
Annulez le facteur commun.
Étape 3.5.2.3.1.1.2.3
Réécrivez l’expression.
Étape 3.5.2.3.1.2
Annulez le facteur commun à et .
Étape 3.5.2.3.1.2.1
Factorisez à partir de .
Étape 3.5.2.3.1.2.2
Annulez les facteurs communs.
Étape 3.5.2.3.1.2.2.1
Factorisez à partir de .
Étape 3.5.2.3.1.2.2.2
Annulez le facteur commun.
Étape 3.5.2.3.1.2.2.3
Réécrivez l’expression.
Étape 3.5.2.3.1.3
Placez le signe moins devant la fraction.
Étape 3.6
Remplacez par.
Étape 4
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Comme l’expression de chaque côté de l’équation a le même dénominateur, les numérateurs doivent être égaux.
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Étape 4.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.3.2.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Étape 4.3.3.1
Divisez par .
Étape 5
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Étape 5.2.1
Multipliez par .
Étape 5.2.2
Soustrayez de .
Étape 5.2.3
Multipliez par .
Étape 5.2.4
Réécrivez comme .
Étape 5.2.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.2.6
La réponse finale est .
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Étape 6.2.1
Multipliez par .
Étape 6.2.2
Soustrayez de .
Étape 6.2.3
Multipliez par .
Étape 6.2.4
Réécrivez comme .
Étape 6.2.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.2.6
Multipliez par .
Étape 6.2.7
La réponse finale est .
Étape 7
The horizontal tangent lines are
Étape 8