Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 0 à pi de xsin(x) par rapport à x
Étape 1
Intégrez par parties en utilisant la formule , où et .
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez par .
Étape 3.2
Multipliez par .
Étape 4
L’intégrale de par rapport à est .
Étape 5
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez et .
Étape 5.2
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Évaluez sur et sur .
Étape 5.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Multipliez par .
Étape 5.2.2.2
Multipliez par .
Étape 5.2.2.3
Additionnez et .
Étape 5.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
La valeur exacte de est .
Étape 5.3.2
Multipliez par .
Étape 5.3.3
Additionnez et .
Étape 5.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 5.4.2
La valeur exacte de est .
Étape 5.4.3
Multipliez par .
Étape 5.4.4
Multipliez par .
Étape 5.4.5
Multipliez par .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 6.1.2
La valeur exacte de est .
Étape 6.2
Additionnez et .
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :