Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de te^(-6t) par rapport à t
Étape 1
Intégrez par parties en utilisant la formule , où et .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 2.2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez par .
Étape 4.2
Multipliez par .
Étape 5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Multipliez par .
Étape 5.2
Réécrivez le problème en utilisant et .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Placez le signe moins devant la fraction.
Étape 6.2
Associez et .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Multipliez par .
Étape 10
L’intégrale de par rapport à est .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Réécrivez comme .
Étape 11.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Associez et .
Étape 11.2.2
Associez et .
Étape 12
Remplacez toutes les occurrences de par .
Étape 13
Associez et .
Étape 14
Remettez les termes dans l’ordre.