Calcul infinitésimal Exemples

Trouver la tangente horizontale f(x)=x/( racine carrée de 2x-1)
Étape 1
Déterminez la dérivée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Utilisez pour réécrire comme .
Étape 1.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Annulez le facteur commun.
Étape 1.3.2.2
Réécrivez l’expression.
Étape 1.4
Simplifiez
Étape 1.5
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.5.2
Multipliez par .
Étape 1.6
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.6.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.6.3
Remplacez toutes les occurrences de par .
Étape 1.7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.8
Associez et .
Étape 1.9
Associez les numérateurs sur le dénominateur commun.
Étape 1.10
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.10.1
Multipliez par .
Étape 1.10.2
Soustrayez de .
Étape 1.11
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.11.1
Placez le signe moins devant la fraction.
Étape 1.11.2
Associez et .
Étape 1.11.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.11.4
Associez et .
Étape 1.12
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.14
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.15
Multipliez par .
Étape 1.16
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.17
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.17.1
Additionnez et .
Étape 1.17.2
Multipliez par .
Étape 1.17.3
Associez et .
Étape 1.17.4
Factorisez à partir de .
Étape 1.18
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.18.1
Factorisez à partir de .
Étape 1.18.2
Annulez le facteur commun.
Étape 1.18.3
Réécrivez l’expression.
Étape 1.19
Placez le signe moins devant la fraction.
Étape 1.20
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.21
Associez les numérateurs sur le dénominateur commun.
Étape 1.22
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.22.1
Utilisez la règle de puissance pour associer des exposants.
Étape 1.22.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.22.3
Additionnez et .
Étape 1.22.4
Divisez par .
Étape 1.23
Simplifiez .
Étape 1.24
Soustrayez de .
Étape 1.25
Réécrivez comme un produit.
Étape 1.26
Multipliez par .
Étape 1.27
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.27.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.27.1.1
Élevez à la puissance .
Étape 1.27.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.27.2
Écrivez comme une fraction avec un dénominateur commun.
Étape 1.27.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.27.4
Additionnez et .
Étape 2
Définissez la dérivée égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez le numérateur égal à zéro.
Étape 2.2
Ajoutez aux deux côtés de l’équation.
Étape 3
Résolvez la fonction d’origine sur .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Multipliez par .
Étape 3.2.1.2
Soustrayez de .
Étape 3.2.1.3
Toute racine de est .
Étape 3.2.2
Divisez par .
Étape 3.2.3
La réponse finale est .
Étape 4
La droite tangente horizontale sur la fonction est .
Étape 5