Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Différenciez en utilisant la règle de puissance.
Étape 1.3.1
Associez et .
Étape 1.3.2
Annulez le facteur commun de .
Étape 1.3.2.1
Annulez le facteur commun.
Étape 1.3.2.2
Réécrivez l’expression.
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.4
Multipliez par .
Étape 2
Étape 2.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2.2
Différenciez.
Étape 2.2.1
Multipliez les exposants dans .
Étape 2.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2
Multipliez par .
Étape 2.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4
Additionnez et .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
La dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle de puissance.
Étape 2.4.1
Associez et .
Étape 2.4.2
Annulez le facteur commun à et .
Étape 2.4.2.1
Factorisez à partir de .
Étape 2.4.2.2
Annulez les facteurs communs.
Étape 2.4.2.2.1
Élevez à la puissance .
Étape 2.4.2.2.2
Factorisez à partir de .
Étape 2.4.2.2.3
Annulez le facteur commun.
Étape 2.4.2.2.4
Réécrivez l’expression.
Étape 2.4.2.2.5
Divisez par .
Étape 2.4.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4.4
Simplifiez en factorisant.
Étape 2.4.4.1
Multipliez par .
Étape 2.4.4.2
Factorisez à partir de .
Étape 2.4.4.2.1
Factorisez à partir de .
Étape 2.4.4.2.2
Factorisez à partir de .
Étape 2.4.4.2.3
Factorisez à partir de .
Étape 2.5
Annulez les facteurs communs.
Étape 2.5.1
Factorisez à partir de .
Étape 2.5.2
Annulez le facteur commun.
Étape 2.5.3
Réécrivez l’expression.
Étape 2.6
Simplifiez
Étape 2.6.1
Appliquez la propriété distributive.
Étape 2.6.2
Simplifiez le numérateur.
Étape 2.6.2.1
Simplifiez chaque terme.
Étape 2.6.2.1.1
Multipliez par .
Étape 2.6.2.1.2
Multipliez .
Étape 2.6.2.1.2.1
Multipliez par .
Étape 2.6.2.1.2.2
Simplifiez en déplaçant dans le logarithme.
Étape 2.6.2.2
Soustrayez de .
Étape 2.6.3
Réécrivez comme .
Étape 2.6.4
Factorisez à partir de .
Étape 2.6.5
Factorisez à partir de .
Étape 2.6.6
Placez le signe moins devant la fraction.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 4.1.2
La dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance.
Étape 4.1.3.1
Associez et .
Étape 4.1.3.2
Annulez le facteur commun de .
Étape 4.1.3.2.1
Annulez le facteur commun.
Étape 4.1.3.2.2
Réécrivez l’expression.
Étape 4.1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.4
Multipliez par .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Définissez le numérateur égal à zéro.
Étape 5.3
Résolvez l’équation pour .
Étape 5.3.1
Soustrayez des deux côtés de l’équation.
Étape 5.3.2
Divisez chaque terme dans par et simplifiez.
Étape 5.3.2.1
Divisez chaque terme dans par .
Étape 5.3.2.2
Simplifiez le côté gauche.
Étape 5.3.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.3.2.2.2
Divisez par .
Étape 5.3.2.3
Simplifiez le côté droit.
Étape 5.3.2.3.1
Divisez par .
Étape 5.3.3
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 5.3.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 5.3.5
Réécrivez l’équation comme .
Étape 6
Étape 6.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.2
Résolvez .
Étape 6.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6.2.2
Simplifiez .
Étape 6.2.2.1
Réécrivez comme .
Étape 6.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.2.2.3
Plus ou moins est .
Étape 6.3
Définissez l’argument dans inférieur ou égal à pour déterminer où l’expression est indéfinie.
Étape 6.4
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Utilisez les règles des logarithmes pour retirer de l’exposant.
Étape 9.2
Le logarithme naturel de est .
Étape 9.3
Multipliez par .
Étape 9.4
Multipliez par .
Étape 9.5
Soustrayez de .
Étape 10
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
Le logarithme naturel de est .
Étape 11.2.2
La réponse finale est .
Étape 12
Ce sont les extrema locaux pour .
est un maximum local
Étape 13