Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 0 à pi de cos(x)^2 par rapport à x
Étape 1
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
Appliquez la règle de la constante.
Étape 5
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Multipliez par .
Étape 5.2
Remplacez la limite inférieure pour dans .
Étape 5.3
Multipliez par .
Étape 5.4
Remplacez la limite supérieure pour dans .
Étape 5.5
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 5.6
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 6
Associez et .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
L’intégrale de par rapport à est .
Étape 9
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Évaluez sur et sur .
Étape 9.2
Évaluez sur et sur .
Étape 9.3
Additionnez et .
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
La valeur exacte de est .
Étape 10.2
Multipliez par .
Étape 10.3
Additionnez et .
Étape 10.4
Associez et .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 11.1.1.2
La valeur exacte de est .
Étape 11.1.2
Divisez par .
Étape 11.2
Additionnez et .
Étape 11.3
Associez et .
Étape 12
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :