Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux e^(1-20x+5x^2)
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3
Additionnez et .
Étape 2.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.6
Multipliez par .
Étape 2.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.9
Multipliez par .
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.3
Additionnez et .
Étape 3.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.6.1
Multipliez par .
Étape 3.2.6.2
Déplacez à gauche de .
Étape 3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.3.3
Remplacez toutes les occurrences de par .
Étape 3.4
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.4.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.3
Additionnez et .
Étape 3.4.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4.6
Multipliez par .
Étape 3.4.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4.9
Multipliez par .
Étape 3.5
Élevez à la puissance .
Étape 3.6
Élevez à la puissance .
Étape 3.7
Utilisez la règle de puissance pour associer des exposants.
Étape 3.8
Additionnez et .
Étape 3.9
Remettez les termes dans l’ordre.
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 5.1.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 5.1.1.3
Remplacez toutes les occurrences de par .
Étape 5.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.3
Additionnez et .
Étape 5.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.6
Multipliez par .
Étape 5.1.2.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.9
Multipliez par .
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Définissez égal à .
Étape 6.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 6.3.2.2
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 6.3.2.3
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Aucune solution
Étape 6.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Définissez égal à .
Étape 6.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.1
Divisez chaque terme dans par .
Étape 6.4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.2.1.1
Annulez le facteur commun.
Étape 6.4.2.2.2.1.2
Divisez par .
Étape 6.4.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.3.1
Divisez par .
Étape 6.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1.1
Multipliez par .
Étape 10.1.1.2
Élevez à la puissance .
Étape 10.1.1.3
Multipliez par .
Étape 10.1.2
Soustrayez de .
Étape 10.1.3
Additionnez et .
Étape 10.1.4
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.1.5
Multipliez par .
Étape 10.1.6
Additionnez et .
Étape 10.1.7
L’élévation de à toute puissance positive produit .
Étape 10.1.8
Multipliez par .
Étape 10.1.9
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.9.1
Multipliez par .
Étape 10.1.9.2
Élevez à la puissance .
Étape 10.1.9.3
Multipliez par .
Étape 10.1.10
Soustrayez de .
Étape 10.1.11
Additionnez et .
Étape 10.1.12
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 10.1.13
Associez et .
Étape 10.2
Additionnez et .
Étape 11
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 12
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Multipliez par .
Étape 12.2.1.2
Élevez à la puissance .
Étape 12.2.1.3
Multipliez par .
Étape 12.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.2.1
Soustrayez de .
Étape 12.2.2.2
Additionnez et .
Étape 12.2.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 12.2.4
La réponse finale est .
Étape 13
Ce sont les extrema locaux pour .
est un minimum local
Étape 14