Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Supprimez les parenthèses.
Étape 2
Multipliez par .
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
Appliquez la règle de la constante.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Utilisez pour réécrire comme .
Étape 9
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 10
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 11
Étape 11.1
Laissez . Déterminez .
Étape 11.1.1
Différenciez .
Étape 11.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.1.4
Multipliez par .
Étape 11.2
Réécrivez le problème en utilisant et .
Étape 12
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13
Étape 13.1
Associez et .
Étape 13.2
Associez et .
Étape 14
L’intégrale de par rapport à est .
Étape 15
Étape 15.1
Associez et .
Étape 15.2
Annulez le facteur commun à et .
Étape 15.2.1
Factorisez à partir de .
Étape 15.2.2
Annulez les facteurs communs.
Étape 15.2.2.1
Factorisez à partir de .
Étape 15.2.2.2
Annulez le facteur commun.
Étape 15.2.2.3
Réécrivez l’expression.
Étape 15.2.2.4
Divisez par .
Étape 16
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 17
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 18
Multipliez par .
Étape 19
L’intégrale de par rapport à est .
Étape 20
Simplifiez
Étape 21
Remplacez toutes les occurrences de par .
Étape 22
Remettez les termes dans l’ordre.