Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 0 à 1 de (x-8)/(x^2-7x+10) par rapport à x
Étape 1
Écrivez la fraction en utilisant la décomposition en fractions partielles.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.1.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.3
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur dans le dénominateur est linéaire, placez une variable unique à sa place .
Étape 1.1.4
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Annulez le facteur commun.
Étape 1.1.5.2
Réécrivez l’expression.
Étape 1.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Annulez le facteur commun.
Étape 1.1.6.2
Divisez par .
Étape 1.1.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1.1
Annulez le facteur commun.
Étape 1.1.7.1.2
Divisez par .
Étape 1.1.7.2
Appliquez la propriété distributive.
Étape 1.1.7.3
Déplacez à gauche de .
Étape 1.1.7.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.4.1
Annulez le facteur commun.
Étape 1.1.7.4.2
Divisez par .
Étape 1.1.7.5
Appliquez la propriété distributive.
Étape 1.1.7.6
Déplacez à gauche de .
Étape 1.1.8
Déplacez .
Étape 1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.3
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 1.3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Réécrivez l’équation comme .
Étape 1.3.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1.1.1
Appliquez la propriété distributive.
Étape 1.3.2.2.1.1.2
Multipliez par .
Étape 1.3.2.2.1.1.3
Multipliez par .
Étape 1.3.2.2.1.2
Soustrayez de .
Étape 1.3.3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Réécrivez l’équation comme .
Étape 1.3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.3.3.2.2
Additionnez et .
Étape 1.3.3.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.1
Divisez chaque terme dans par .
Étape 1.3.3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.2.1.1
Annulez le facteur commun.
Étape 1.3.3.3.2.1.2
Divisez par .
Étape 1.3.3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.3.3.1
Divisez par .
Étape 1.3.4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1.1
Multipliez par .
Étape 1.3.4.2.1.2
Soustrayez de .
Étape 1.3.5
Indiquez toutes les solutions.
Étape 1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour et .
Étape 1.5
Placez le signe moins devant la fraction.
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.5
Additionnez et .
Étape 4.2
Remplacez la limite inférieure pour dans .
Étape 4.3
Soustrayez de .
Étape 4.4
Remplacez la limite supérieure pour dans .
Étape 4.5
Soustrayez de .
Étape 4.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 4.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 5
L’intégrale de par rapport à est .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Différenciez .
Étape 7.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 7.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 7.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.1.5
Additionnez et .
Étape 7.2
Remplacez la limite inférieure pour dans .
Étape 7.3
Soustrayez de .
Étape 7.4
Remplacez la limite supérieure pour dans .
Étape 7.5
Soustrayez de .
Étape 7.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 7.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 8
L’intégrale de par rapport à est .
Étape 9
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Évaluez sur et sur .
Étape 9.2
Évaluez sur et sur .
Étape 9.3
Supprimez les parenthèses.
Étape 10
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Utilisez la propriété du quotient des logarithmes, .
Étape 10.2
Utilisez la propriété du quotient des logarithmes, .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.4
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 12
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 13