Entrer un problème...
Calcul infinitésimal Exemples
Step 1
Prenez la limite du numérateur et la limite du dénominateur.
Évaluez la limite du numérateur.
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Évaluez la limite de en insérant pour .
La valeur exacte de est .
Évaluez la limite de en insérant pour .
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Step 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Step 3
Différenciez le numérateur et le dénominateur.
La dérivée de par rapport à est .
Différenciez en utilisant la règle de puissance qui indique que est où .
Step 4
Divisez par .
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Step 5
Évaluez la limite de en insérant pour .
Step 6
La valeur exacte de est .