Entrer un problème...
Calcul infinitésimal Exemples
on
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.1.2
La dérivée de par rapport à est .
Étape 1.1.1.3
Simplifiez
Étape 1.1.1.3.1
Réorganisez les facteurs de .
Étape 1.1.1.3.2
Remettez dans l’ordre et .
Étape 1.1.1.3.3
Remettez dans l’ordre et .
Étape 1.1.1.3.4
Appliquez l’identité d’angle double du sinus.
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
La valeur exacte de est .
Étape 1.2.4
Divisez chaque terme dans par et simplifiez.
Étape 1.2.4.1
Divisez chaque terme dans par .
Étape 1.2.4.2
Simplifiez le côté gauche.
Étape 1.2.4.2.1
Annulez le facteur commun de .
Étape 1.2.4.2.1.1
Annulez le facteur commun.
Étape 1.2.4.2.1.2
Divisez par .
Étape 1.2.4.3
Simplifiez le côté droit.
Étape 1.2.4.3.1
Divisez par .
Étape 1.2.5
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 1.2.6
Résolvez .
Étape 1.2.6.1
Simplifiez
Étape 1.2.6.1.1
Multipliez par .
Étape 1.2.6.1.2
Additionnez et .
Étape 1.2.6.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.6.2.1
Divisez chaque terme dans par .
Étape 1.2.6.2.2
Simplifiez le côté gauche.
Étape 1.2.6.2.2.1
Annulez le facteur commun de .
Étape 1.2.6.2.2.1.1
Annulez le facteur commun.
Étape 1.2.6.2.2.1.2
Divisez par .
Étape 1.2.7
Déterminez la période de .
Étape 1.2.7.1
La période de la fonction peut être calculée en utilisant .
Étape 1.2.7.2
Remplacez par dans la formule pour la période.
Étape 1.2.7.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.2.7.4
Annulez le facteur commun de .
Étape 1.2.7.4.1
Annulez le facteur commun.
Étape 1.2.7.4.2
Divisez par .
Étape 1.2.8
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 1.2.9
Consolidez les réponses.
, pour tout entier
, pour tout entier
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Étape 1.4.1
Évaluez sur .
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Étape 1.4.1.2.1
La valeur exacte de est .
Étape 1.4.1.2.2
L’élévation de à toute puissance positive produit .
Étape 1.4.2
Évaluez sur .
Étape 1.4.2.1
Remplacez par .
Étape 1.4.2.2
Simplifiez
Étape 1.4.2.2.1
La valeur exacte de est .
Étape 1.4.2.2.2
Un à n’importe quelle puissance est égal à un.
Étape 1.4.3
Indiquez tous les points.
, pour tout entier
, pour tout entier
, pour tout entier
Étape 2
Excluez les points qui ne sont pas sur l’intervalle.
Étape 3
Étape 3.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 3.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 3.2.1
Remplacez la variable par dans l’expression.
Étape 3.2.2
Simplifiez le résultat.
Étape 3.2.2.1
Multipliez par .
Étape 3.2.2.2
Évaluez .
Étape 3.2.2.3
La réponse finale est .
Étape 3.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Étape 3.3.2.1
Multipliez par .
Étape 3.3.2.2
Évaluez .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 3.4.1
Remplacez la variable par dans l’expression.
Étape 3.4.2
Simplifiez le résultat.
Étape 3.4.2.1
Multipliez par .
Étape 3.4.2.2
Évaluez .
Étape 3.4.2.3
La réponse finale est .
Étape 3.5
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 3.5.1
Remplacez la variable par dans l’expression.
Étape 3.5.2
Simplifiez le résultat.
Étape 3.5.2.1
Multipliez par .
Étape 3.5.2.2
Évaluez .
Étape 3.5.2.3
La réponse finale est .
Étape 3.6
Comma la dérivée première n’a pas changé de signe autour de , ce n’est pas ni un maximum ni un minimum local.
Pas un maximum ni un minimum local
Étape 3.7
Comme la dérivée première a changé de signe de positive à négative autour de , est un maximum local.
est un maximum local
Étape 3.8
Comma la dérivée première n’a pas changé de signe autour de , ce n’est pas ni un maximum ni un minimum local.
Pas un maximum ni un minimum local
Étape 3.9
Ce sont les extrema locaux pour .
est un maximum local
est un maximum local
Étape 4
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Aucun minimum absolu
Étape 5