Calcul infinitésimal Exemples

Trouver le maximum et le minimum absolus sur l’intervalle f(x)=-1/x , -2<=x<=-1
,
Étape 1
Déterminez les points critiques.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Réécrivez comme .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.2.3
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.3.1
Multipliez par .
Étape 1.1.1.2.3.2
Multipliez par .
Étape 1.1.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.5.1
Multipliez par .
Étape 1.1.1.2.5.2
Additionnez et .
Étape 1.1.1.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 1.3.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.2.1
Réécrivez comme .
Étape 1.3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.3.2.2.3
Plus ou moins est .
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 1.5
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Aucun point critique n’a été trouvé
Étape 2
Évaluez sur les points finaux inclus.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Placez le signe moins devant la fraction.
Étape 2.1.2.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Multipliez par .
Étape 2.1.2.2.2
Multipliez par .
Étape 2.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Divisez par .
Étape 2.2.2.2
Multipliez par .
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4