Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Évaluez .
Étape 1.1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.1.2.4
Associez et .
Étape 1.1.1.2.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.1.2.6
Simplifiez le numérateur.
Étape 1.1.1.2.6.1
Multipliez par .
Étape 1.1.1.2.6.2
Soustrayez de .
Étape 1.1.1.2.7
Associez et .
Étape 1.1.1.2.8
Multipliez par .
Étape 1.1.1.2.9
Multipliez par .
Étape 1.1.1.2.10
Multipliez par .
Étape 1.1.1.2.11
Annulez le facteur commun.
Étape 1.1.1.2.12
Divisez par .
Étape 1.1.1.3
Évaluez .
Étape 1.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.1.3.4
Associez et .
Étape 1.1.1.3.5
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.1.3.6
Simplifiez le numérateur.
Étape 1.1.1.3.6.1
Multipliez par .
Étape 1.1.1.3.6.2
Soustrayez de .
Étape 1.1.1.3.7
Associez et .
Étape 1.1.1.3.8
Multipliez par .
Étape 1.1.1.3.9
Multipliez par .
Étape 1.1.1.3.10
Multipliez par .
Étape 1.1.1.3.11
Annulez le facteur commun.
Étape 1.1.1.3.12
Divisez par .
Étape 1.1.1.4
Différenciez en utilisant la règle de la constante.
Étape 1.1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.4.2
Additionnez et .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Déterminez un facteur commun présent dans chaque terme.
Étape 1.2.3
Remplacez par .
Étape 1.2.4
Résolvez .
Étape 1.2.4.1
Multipliez par .
Étape 1.2.4.2
Factorisez le côté gauche de l’équation.
Étape 1.2.4.2.1
Factorisez à partir de .
Étape 1.2.4.2.1.1
Factorisez à partir de .
Étape 1.2.4.2.1.2
Factorisez à partir de .
Étape 1.2.4.2.1.3
Factorisez à partir de .
Étape 1.2.4.2.2
Réécrivez comme .
Étape 1.2.4.2.3
Factorisez.
Étape 1.2.4.2.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.2.4.2.3.2
Supprimez les parenthèses inutiles.
Étape 1.2.4.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 1.2.4.4
Définissez égal à .
Étape 1.2.4.5
Définissez égal à et résolvez .
Étape 1.2.4.5.1
Définissez égal à .
Étape 1.2.4.5.2
Soustrayez des deux côtés de l’équation.
Étape 1.2.4.6
Définissez égal à et résolvez .
Étape 1.2.4.6.1
Définissez égal à .
Étape 1.2.4.6.2
Ajoutez aux deux côtés de l’équation.
Étape 1.2.4.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 1.2.5
Remplacez par .
Étape 1.2.6
Résolvez pour .
Étape 1.2.6.1
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 1.2.6.2
Simplifiez l’exposant.
Étape 1.2.6.2.1
Simplifiez le côté gauche.
Étape 1.2.6.2.1.1
Simplifiez .
Étape 1.2.6.2.1.1.1
Multipliez les exposants dans .
Étape 1.2.6.2.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.6.2.1.1.1.2
Annulez le facteur commun de .
Étape 1.2.6.2.1.1.1.2.1
Annulez le facteur commun.
Étape 1.2.6.2.1.1.1.2.2
Réécrivez l’expression.
Étape 1.2.6.2.1.1.2
Simplifiez
Étape 1.2.6.2.2
Simplifiez le côté droit.
Étape 1.2.6.2.2.1
L’élévation de à toute puissance positive produit .
Étape 1.2.7
Résolvez pour .
Étape 1.2.7.1
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 1.2.7.2
Simplifiez l’exposant.
Étape 1.2.7.2.1
Simplifiez le côté gauche.
Étape 1.2.7.2.1.1
Simplifiez .
Étape 1.2.7.2.1.1.1
Multipliez les exposants dans .
Étape 1.2.7.2.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.7.2.1.1.1.2
Annulez le facteur commun de .
Étape 1.2.7.2.1.1.1.2.1
Annulez le facteur commun.
Étape 1.2.7.2.1.1.1.2.2
Réécrivez l’expression.
Étape 1.2.7.2.1.1.2
Simplifiez
Étape 1.2.7.2.2
Simplifiez le côté droit.
Étape 1.2.7.2.2.1
Élevez à la puissance .
Étape 1.2.8
Indiquez toutes les solutions.
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Étape 1.3.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 1.3.1.2
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 1.3.1.3
Toute valeur élevée à est la base elle-même.
Étape 1.3.2
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 1.3.3
Résolvez .
Étape 1.3.3.1
Prenez la racine spécifiée des deux côtés de l’inégalité pour éliminer l’exposant du côté gauche.
Étape 1.3.3.2
Simplifiez l’équation.
Étape 1.3.3.2.1
Simplifiez le côté gauche.
Étape 1.3.3.2.1.1
Extrayez les termes de sous le radical.
Étape 1.3.3.2.2
Simplifiez le côté droit.
Étape 1.3.3.2.2.1
Simplifiez .
Étape 1.3.3.2.2.1.1
Réécrivez comme .
Étape 1.3.3.2.2.1.2
Extrayez les termes de sous le radical.
Étape 1.3.4
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Étape 1.4.1
Évaluez sur .
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Étape 1.4.1.2.1
Simplifiez chaque terme.
Étape 1.4.1.2.1.1
Simplifiez le numérateur.
Étape 1.4.1.2.1.1.1
Réécrivez comme .
Étape 1.4.1.2.1.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.4.1.2.1.1.3
Annulez le facteur commun de .
Étape 1.4.1.2.1.1.3.1
Annulez le facteur commun.
Étape 1.4.1.2.1.1.3.2
Réécrivez l’expression.
Étape 1.4.1.2.1.1.4
L’élévation de à toute puissance positive produit .
Étape 1.4.1.2.1.2
Multipliez par .
Étape 1.4.1.2.1.3
Divisez par .
Étape 1.4.1.2.1.4
Simplifiez le numérateur.
Étape 1.4.1.2.1.4.1
Réécrivez comme .
Étape 1.4.1.2.1.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.4.1.2.1.4.3
Annulez le facteur commun de .
Étape 1.4.1.2.1.4.3.1
Annulez le facteur commun.
Étape 1.4.1.2.1.4.3.2
Réécrivez l’expression.
Étape 1.4.1.2.1.4.4
L’élévation de à toute puissance positive produit .
Étape 1.4.1.2.1.5
Multipliez par .
Étape 1.4.1.2.1.6
Divisez par .
Étape 1.4.1.2.1.7
Multipliez par .
Étape 1.4.1.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 1.4.1.2.2.1
Additionnez et .
Étape 1.4.1.2.2.2
Soustrayez de .
Étape 1.4.2
Évaluez sur .
Étape 1.4.2.1
Remplacez par .
Étape 1.4.2.2
Simplifiez
Étape 1.4.2.2.1
Simplifiez chaque terme.
Étape 1.4.2.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 1.4.2.2.1.2
Multipliez par .
Étape 1.4.2.2.1.3
Un à n’importe quelle puissance est égal à un.
Étape 1.4.2.2.1.4
Multipliez par .
Étape 1.4.2.2.2
Déterminez le dénominateur commun.
Étape 1.4.2.2.2.1
Multipliez par .
Étape 1.4.2.2.2.2
Multipliez par .
Étape 1.4.2.2.2.3
Multipliez par .
Étape 1.4.2.2.2.4
Multipliez par .
Étape 1.4.2.2.2.5
Écrivez comme une fraction avec le dénominateur .
Étape 1.4.2.2.2.6
Multipliez par .
Étape 1.4.2.2.2.7
Multipliez par .
Étape 1.4.2.2.2.8
Réorganisez les facteurs de .
Étape 1.4.2.2.2.9
Multipliez par .
Étape 1.4.2.2.2.10
Multipliez par .
Étape 1.4.2.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.4.2.2.4
Simplifiez chaque terme.
Étape 1.4.2.2.4.1
Multipliez par .
Étape 1.4.2.2.4.2
Multipliez par .
Étape 1.4.2.2.4.3
Multipliez par .
Étape 1.4.2.2.5
Simplifiez l’expression.
Étape 1.4.2.2.5.1
Soustrayez de .
Étape 1.4.2.2.5.2
Soustrayez de .
Étape 1.4.2.2.5.3
Placez le signe moins devant la fraction.
Étape 1.4.3
Indiquez tous les points.
Étape 2
Étape 2.1
Évaluez sur .
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Étape 2.1.2.1
Simplifiez chaque terme.
Étape 2.1.2.1.1
Simplifiez le numérateur.
Étape 2.1.2.1.1.1
Réécrivez comme .
Étape 2.1.2.1.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.2.1.1.3
Annulez le facteur commun de .
Étape 2.1.2.1.1.3.1
Annulez le facteur commun.
Étape 2.1.2.1.1.3.2
Réécrivez l’expression.
Étape 2.1.2.1.1.4
L’élévation de à toute puissance positive produit .
Étape 2.1.2.1.2
Multipliez par .
Étape 2.1.2.1.3
Divisez par .
Étape 2.1.2.1.4
Simplifiez le numérateur.
Étape 2.1.2.1.4.1
Réécrivez comme .
Étape 2.1.2.1.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.2.1.4.3
Annulez le facteur commun de .
Étape 2.1.2.1.4.3.1
Annulez le facteur commun.
Étape 2.1.2.1.4.3.2
Réécrivez l’expression.
Étape 2.1.2.1.4.4
L’élévation de à toute puissance positive produit .
Étape 2.1.2.1.5
Multipliez par .
Étape 2.1.2.1.6
Divisez par .
Étape 2.1.2.1.7
Multipliez par .
Étape 2.1.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 2.1.2.2.1
Additionnez et .
Étape 2.1.2.2.2
Soustrayez de .
Étape 2.2
Évaluez sur .
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Étape 2.2.2.1
Simplifiez chaque terme.
Étape 2.2.2.1.1
Simplifiez le numérateur.
Étape 2.2.2.1.1.1
Réécrivez comme .
Étape 2.2.2.1.1.2
Multipliez les exposants dans .
Étape 2.2.2.1.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.1.1.2.2
Annulez le facteur commun de .
Étape 2.2.2.1.1.2.2.1
Annulez le facteur commun.
Étape 2.2.2.1.1.2.2.2
Réécrivez l’expression.
Étape 2.2.2.1.1.3
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2.1.1.4
Additionnez et .
Étape 2.2.2.1.2
Élevez à la puissance .
Étape 2.2.2.1.3
Simplifiez le numérateur.
Étape 2.2.2.1.3.1
Réécrivez comme .
Étape 2.2.2.1.3.2
Multipliez les exposants dans .
Étape 2.2.2.1.3.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.1.3.2.2
Annulez le facteur commun de .
Étape 2.2.2.1.3.2.2.1
Annulez le facteur commun.
Étape 2.2.2.1.3.2.2.2
Réécrivez l’expression.
Étape 2.2.2.1.3.3
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2.1.3.4
Additionnez et .
Étape 2.2.2.1.4
Élevez à la puissance .
Étape 2.2.2.2
Déterminez le dénominateur commun.
Étape 2.2.2.2.1
Multipliez par .
Étape 2.2.2.2.2
Multipliez par .
Étape 2.2.2.2.3
Multipliez par .
Étape 2.2.2.2.4
Multipliez par .
Étape 2.2.2.2.5
Écrivez comme une fraction avec le dénominateur .
Étape 2.2.2.2.6
Multipliez par .
Étape 2.2.2.2.7
Multipliez par .
Étape 2.2.2.2.8
Réorganisez les facteurs de .
Étape 2.2.2.2.9
Multipliez par .
Étape 2.2.2.2.10
Multipliez par .
Étape 2.2.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.2.4
Simplifiez chaque terme.
Étape 2.2.2.4.1
Multipliez par .
Étape 2.2.2.4.2
Multipliez par .
Étape 2.2.2.4.3
Multipliez par .
Étape 2.2.2.5
Simplifiez en soustrayant des nombres.
Étape 2.2.2.5.1
Soustrayez de .
Étape 2.2.2.5.2
Soustrayez de .
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4