Entrer un problème...
Calcul infinitésimal Exemples
;
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.1.3
Associez et .
Étape 1.1.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.1.5
Simplifiez le numérateur.
Étape 1.1.1.5.1
Multipliez par .
Étape 1.1.1.5.2
Soustrayez de .
Étape 1.1.1.6
Placez le signe moins devant la fraction.
Étape 1.1.1.7
Simplifiez
Étape 1.1.1.7.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.1.7.2
Multipliez par .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Étape 1.3.1.1
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 1.3.1.2
Toute valeur élevée à est la base elle-même.
Étape 1.3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.3.3
Résolvez .
Étape 1.3.3.1
Pour retirer le radical du côté gauche de l’équation, élevez au cube les deux côtés de l’équation.
Étape 1.3.3.2
Simplifiez chaque côté de l’équation.
Étape 1.3.3.2.1
Utilisez pour réécrire comme .
Étape 1.3.3.2.2
Simplifiez le côté gauche.
Étape 1.3.3.2.2.1
Simplifiez .
Étape 1.3.3.2.2.1.1
Appliquez la règle de produit à .
Étape 1.3.3.2.2.1.2
Élevez à la puissance .
Étape 1.3.3.2.2.1.3
Multipliez les exposants dans .
Étape 1.3.3.2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.3.3.2.2.1.3.2
Annulez le facteur commun de .
Étape 1.3.3.2.2.1.3.2.1
Annulez le facteur commun.
Étape 1.3.3.2.2.1.3.2.2
Réécrivez l’expression.
Étape 1.3.3.2.2.1.4
Simplifiez
Étape 1.3.3.2.3
Simplifiez le côté droit.
Étape 1.3.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 1.3.3.3
Divisez chaque terme dans par et simplifiez.
Étape 1.3.3.3.1
Divisez chaque terme dans par .
Étape 1.3.3.3.2
Simplifiez le côté gauche.
Étape 1.3.3.3.2.1
Annulez le facteur commun de .
Étape 1.3.3.3.2.1.1
Annulez le facteur commun.
Étape 1.3.3.3.2.1.2
Divisez par .
Étape 1.3.3.3.3
Simplifiez le côté droit.
Étape 1.3.3.3.3.1
Divisez par .
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Étape 1.4.1
Évaluez sur .
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Étape 1.4.1.2.1
Simplifiez l’expression.
Étape 1.4.1.2.1.1
Réécrivez comme .
Étape 1.4.1.2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.4.1.2.2
Annulez le facteur commun de .
Étape 1.4.1.2.2.1
Annulez le facteur commun.
Étape 1.4.1.2.2.2
Réécrivez l’expression.
Étape 1.4.1.2.3
L’élévation de à toute puissance positive produit .
Étape 1.4.2
Indiquez tous les points.
Étape 2
Étape 2.1
Évaluez sur .
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Étape 2.1.2.1
Simplifiez l’expression.
Étape 2.1.2.1.1
Réécrivez comme .
Étape 2.1.2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.2.2
Annulez le facteur commun de .
Étape 2.1.2.2.1
Annulez le facteur commun.
Étape 2.1.2.2.2
Réécrivez l’expression.
Étape 2.1.2.3
Élevez à la puissance .
Étape 2.2
Évaluez sur .
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Un à n’importe quelle puissance est égal à un.
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4