Calcul infinitésimal Exemples

Trouver le maximum et le minimum absolus sur l’intervalle p=1/12x^2-14x+588 , 0<=x<=84
,
Étape 1
Déterminez les points critiques.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.2.3
Associez et .
Étape 1.1.1.2.4
Associez et .
Étape 1.1.1.2.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.5.1
Factorisez à partir de .
Étape 1.1.1.2.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.5.2.1
Factorisez à partir de .
Étape 1.1.1.2.5.2.2
Annulez le facteur commun.
Étape 1.1.1.2.5.2.3
Réécrivez l’expression.
Étape 1.1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.3.3
Multipliez par .
Étape 1.1.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.4.2
Additionnez et .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Ajoutez aux deux côtés de l’équation.
Étape 1.2.3
Multipliez les deux côtés de l’équation par .
Étape 1.2.4
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1.1.1
Annulez le facteur commun.
Étape 1.2.4.1.1.2
Réécrivez l’expression.
Étape 1.2.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.2.1
Multipliez par .
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1.1
Élevez à la puissance .
Étape 1.4.1.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1.2.1
Factorisez à partir de .
Étape 1.4.1.2.1.2.2
Annulez le facteur commun.
Étape 1.4.1.2.1.2.3
Réécrivez l’expression.
Étape 1.4.1.2.1.3
Multipliez par .
Étape 1.4.1.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.2.1
Soustrayez de .
Étape 1.4.1.2.2.2
Additionnez et .
Étape 1.4.2
Indiquez tous les points.
Étape 2
Évaluez sur les points finaux inclus.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 2.1.2.1.2
Multipliez par .
Étape 2.1.2.1.3
Multipliez par .
Étape 2.1.2.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Additionnez et .
Étape 2.1.2.2.2
Additionnez et .
Étape 2.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Élevez à la puissance .
Étape 2.2.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.2.1
Factorisez à partir de .
Étape 2.2.2.1.2.2
Annulez le facteur commun.
Étape 2.2.2.1.2.3
Réécrivez l’expression.
Étape 2.2.2.1.3
Multipliez par .
Étape 2.2.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
Soustrayez de .
Étape 2.2.2.2.2
Additionnez et .
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4