Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Évaluez .
Étape 1.1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.3
Associez et .
Étape 1.1.1.2.4
Associez et .
Étape 1.1.1.2.5
Annulez le facteur commun à et .
Étape 1.1.1.2.5.1
Factorisez à partir de .
Étape 1.1.1.2.5.2
Annulez les facteurs communs.
Étape 1.1.1.2.5.2.1
Factorisez à partir de .
Étape 1.1.1.2.5.2.2
Annulez le facteur commun.
Étape 1.1.1.2.5.2.3
Réécrivez l’expression.
Étape 1.1.1.3
Évaluez .
Étape 1.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.3.3
Multipliez par .
Étape 1.1.1.4
Différenciez en utilisant la règle de la constante.
Étape 1.1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.4.2
Additionnez et .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Ajoutez aux deux côtés de l’équation.
Étape 1.2.3
Multipliez les deux côtés de l’équation par .
Étape 1.2.4
Simplifiez les deux côtés de l’équation.
Étape 1.2.4.1
Simplifiez le côté gauche.
Étape 1.2.4.1.1
Annulez le facteur commun de .
Étape 1.2.4.1.1.1
Annulez le facteur commun.
Étape 1.2.4.1.1.2
Réécrivez l’expression.
Étape 1.2.4.2
Simplifiez le côté droit.
Étape 1.2.4.2.1
Multipliez par .
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Étape 1.4.1
Évaluez sur .
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Étape 1.4.1.2.1
Simplifiez chaque terme.
Étape 1.4.1.2.1.1
Élevez à la puissance .
Étape 1.4.1.2.1.2
Annulez le facteur commun de .
Étape 1.4.1.2.1.2.1
Factorisez à partir de .
Étape 1.4.1.2.1.2.2
Annulez le facteur commun.
Étape 1.4.1.2.1.2.3
Réécrivez l’expression.
Étape 1.4.1.2.1.3
Multipliez par .
Étape 1.4.1.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 1.4.1.2.2.1
Soustrayez de .
Étape 1.4.1.2.2.2
Additionnez et .
Étape 1.4.2
Indiquez tous les points.
Étape 2
Étape 2.1
Évaluez sur .
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Étape 2.1.2.1
Simplifiez chaque terme.
Étape 2.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 2.1.2.1.2
Multipliez par .
Étape 2.1.2.1.3
Multipliez par .
Étape 2.1.2.2
Simplifiez en ajoutant des nombres.
Étape 2.1.2.2.1
Additionnez et .
Étape 2.1.2.2.2
Additionnez et .
Étape 2.2
Évaluez sur .
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Étape 2.2.2.1
Simplifiez chaque terme.
Étape 2.2.2.1.1
Élevez à la puissance .
Étape 2.2.2.1.2
Annulez le facteur commun de .
Étape 2.2.2.1.2.1
Factorisez à partir de .
Étape 2.2.2.1.2.2
Annulez le facteur commun.
Étape 2.2.2.1.2.3
Réécrivez l’expression.
Étape 2.2.2.1.3
Multipliez par .
Étape 2.2.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 2.2.2.2.1
Soustrayez de .
Étape 2.2.2.2.2
Additionnez et .
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4