Entrer un problème...
Calcul infinitésimal Exemples
;
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 1.2.3
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 1.2.4
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 1.4
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Aucun point critique n’a été trouvé
Étape 2
Étape 2.1
Évaluez sur .
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.2
Remplacez par .
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4