Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Différenciez.
Étape 1.1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2
Évaluez .
Étape 1.1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.1.2.2.2
La dérivée de par rapport à est .
Étape 1.1.1.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.6
Additionnez et .
Étape 1.1.1.2.7
Multipliez par .
Étape 1.1.1.3
Soustrayez de .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Ajoutez aux deux côtés de l’équation.
Étape 1.2.4
Excluez les solutions qui ne rendent pas vrai.
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.3.2
Résolvez .
Étape 1.3.2.1
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 1.3.2.2
Plus ou moins est .
Étape 1.3.2.3
Ajoutez aux deux côtés de l’équation.
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Étape 1.4.1
Évaluez sur .
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Étape 1.4.1.2.1
Simplifiez chaque terme.
Étape 1.4.1.2.1.1
Soustrayez de .
Étape 1.4.1.2.1.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.4.1.2.1.3
Multipliez par .
Étape 1.4.1.2.2
Additionnez et .
Étape 1.4.2
Indiquez tous les points.
Étape 2
Étape 2.1
Évaluez sur .
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Étape 2.1.2.1
Simplifiez chaque terme.
Étape 2.1.2.1.1
Soustrayez de .
Étape 2.1.2.1.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.1.2.1.3
Multipliez par .
Étape 2.1.2.2
Soustrayez de .
Étape 2.2
Évaluez sur .
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Étape 2.2.2.1
Simplifiez chaque terme.
Étape 2.2.2.1.1
Soustrayez de .
Étape 2.2.2.1.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.2.2.1.3
Multipliez par .
Étape 2.2.2.2
Soustrayez de .
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4