Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Déterminez la dérivée première.
Étape 1.1.1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.1.1.2
Différenciez.
Étape 1.1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.4
Simplifiez l’expression.
Étape 1.1.1.2.4.1
Additionnez et .
Étape 1.1.1.2.4.2
Multipliez par .
Étape 1.1.1.2.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.7
Additionnez et .
Étape 1.1.1.2.8
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.1.2.9
Multipliez par .
Étape 1.1.1.3
Simplifiez
Étape 1.1.1.3.1
Appliquez la propriété distributive.
Étape 1.1.1.3.2
Simplifiez le numérateur.
Étape 1.1.1.3.2.1
Associez les termes opposés dans .
Étape 1.1.1.3.2.1.1
Soustrayez de .
Étape 1.1.1.3.2.1.2
Additionnez et .
Étape 1.1.1.3.2.2
Multipliez par .
Étape 1.1.1.3.2.3
Additionnez et .
Étape 1.1.1.3.3
Remettez les termes dans l’ordre.
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Définissez le numérateur égal à zéro.
Étape 1.2.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Étape 1.3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.3.2
Résolvez .
Étape 1.3.2.1
Définissez le égal à .
Étape 1.3.2.2
Soustrayez des deux côtés de l’équation.
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Étape 1.4.1
Évaluez sur .
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Étape 1.4.1.2.1
Supprimez les parenthèses.
Étape 1.4.1.2.2
Soustrayez de .
Étape 1.4.1.2.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Indéfini
Étape 1.5
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé
Aucun point critique n’a été trouvé
Étape 2
Étape 2.1
Évaluez sur .
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Étape 2.1.2.1
Supprimez les parenthèses.
Étape 2.1.2.2
Soustrayez de .
Étape 2.1.2.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Indéfini
Étape 2.2
Évaluez sur .
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Étape 2.2.2.1
Supprimez les parenthèses.
Étape 2.2.2.2
Soustrayez de .
Étape 2.2.2.3
Additionnez et .
Étape 2.2.2.4
Placez le signe moins devant la fraction.
Étape 2.3
Indiquez tous les points.
Étape 3
Comme il n’y a pas de valeur de qui rende la dérivée première égale à , il n’y a aucun extremum local.
Aucun extremum local
Étape 4
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Aucun minimum absolu
Étape 5