Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3
Différenciez.
Étape 1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4
Simplifiez l’expression.
Étape 1.3.4.1
Additionnez et .
Étape 1.3.4.2
Multipliez par .
Étape 1.4
Simplifiez
Étape 1.4.1
Appliquez la propriété distributive.
Étape 1.4.2
Soustrayez de .
Étape 1.4.3
Remettez les termes dans l’ordre.
Étape 1.4.4
Factorisez à partir de .
Étape 1.4.4.1
Factorisez à partir de .
Étape 1.4.4.2
Factorisez à partir de .
Étape 1.4.4.3
Factorisez à partir de .
Étape 1.5
Évaluez la dérivée sur .
Étape 1.6
Simplifiez
Étape 1.6.1
Simplifiez le numérateur.
Étape 1.6.1.1
Additionnez et .
Étape 1.6.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.6.1.3
Multipliez par .
Étape 1.6.2
Simplifiez le dénominateur.
Étape 1.6.2.1
Additionnez et .
Étape 1.6.2.2
Élevez à la puissance .
Étape 2
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Étape 2.3.1
Simplifiez .
Étape 2.3.1.1
Additionnez et .
Étape 2.3.1.2
Associez et .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3.3
Remettez les termes dans l’ordre.
Étape 3