Calcul infinitésimal Exemples

Encontre a Reta Tangente em x=π f(x)=xsin(10x) at x=pi
at
Étape 1
Déterminez la valeur correspondant à .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Remplacez dans par .
Étape 1.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Multipliez par .
Étape 1.2.2
Supprimez les parenthèses.
Étape 1.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 1.2.3.2
La valeur exacte de est .
Étape 1.2.3.3
Multipliez par .
Étape 2
Déterminez la dérivée première et évaluez sur et pour déterminer la pente de la droite tangente.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Déplacez à gauche de .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Multipliez par .
Étape 2.3.5.2
Remettez les termes dans l’ordre.
Étape 2.4
Évaluez la dérivée sur .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 2.5.1.2
La valeur exacte de est .
Étape 2.5.1.3
Multipliez par .
Étape 2.5.1.4
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 2.5.1.5
La valeur exacte de est .
Étape 2.5.2
Additionnez et .
Étape 3
Insérez les valeurs de pente et de point dans la formule point-pente et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 3.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Additionnez et .
Étape 3.3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Appliquez la propriété distributive.
Étape 3.3.2.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
Multipliez par .
Étape 3.3.2.2.2
Élevez à la puissance .
Étape 3.3.2.2.3
Élevez à la puissance .
Étape 3.3.2.2.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.2.2.5
Additionnez et .
Étape 4