Calcul infinitésimal Exemples

Encontre a Reta Tangente em (π/6,1) y=2sin(x) at the point (pi/6,1)
at the point
Étape 1
Déterminez la dérivée première et évaluez sur et pour déterminer la pente de la droite tangente.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Évaluez la dérivée sur .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
La valeur exacte de est .
Étape 1.4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Annulez le facteur commun.
Étape 1.4.2.2
Réécrivez l’expression.
Étape 2
Insérez les valeurs de pente et de point dans la formule point-pente et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Réécrivez.
Étape 2.3.1.2
Simplifiez en ajoutant des zéros.
Étape 2.3.1.3
Appliquez la propriété distributive.
Étape 2.3.1.4
Associez et .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3.3
Écrivez en forme .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 2.3.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.3.3
Factorisez à partir de .
Étape 2.3.3.4
Réécrivez comme .
Étape 2.3.3.5
Factorisez à partir de .
Étape 2.3.3.6
Réécrivez comme .
Étape 2.3.3.7
Placez le signe moins devant la fraction.
Étape 3