Calcul infinitésimal Exemples

Encontre a Reta Tangente em (3,3) y=(4x)/(x+1) , (3,3)
,
Étape 1
Déterminez la dérivée première et évaluez sur et pour déterminer la pente de la droite tangente.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.2
Multipliez par .
Étape 1.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.6
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.6.1
Additionnez et .
Étape 1.3.6.2
Multipliez par .
Étape 1.3.6.3
Soustrayez de .
Étape 1.3.6.4
Additionnez et .
Étape 1.3.6.5
Associez et .
Étape 1.4
Évaluez la dérivée sur .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Additionnez et .
Étape 1.5.1.2
Élevez à la puissance .
Étape 1.5.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Factorisez à partir de .
Étape 1.5.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.2.1
Factorisez à partir de .
Étape 1.5.2.2.2
Annulez le facteur commun.
Étape 1.5.2.2.3
Réécrivez l’expression.
Étape 2
Insérez les valeurs de pente et de point dans la formule point-pente et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Réécrivez.
Étape 2.3.1.2
Simplifiez en ajoutant des zéros.
Étape 2.3.1.3
Appliquez la propriété distributive.
Étape 2.3.1.4
Associez et .
Étape 2.3.1.5
Associez et .
Étape 2.3.1.6
Placez le signe moins devant la fraction.
Étape 2.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3.2.3
Associez et .
Étape 2.3.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 2.3.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.5.1
Multipliez par .
Étape 2.3.2.5.2
Additionnez et .
Étape 2.3.3
Remettez les termes dans l’ordre.
Étape 3