Calcul infinitésimal Exemples

Encontre a Reta Tangente em (1,2) y=2 racine carrée de x , (1,2)
,
Étape 1
Déterminez la dérivée première et évaluez sur et pour déterminer la pente de la droite tangente.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Utilisez pour réécrire comme .
Étape 1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.5
Associez et .
Étape 1.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.7
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.7.1
Multipliez par .
Étape 1.7.2
Soustrayez de .
Étape 1.8
Placez le signe moins devant la fraction.
Étape 1.9
Associez et .
Étape 1.10
Associez et .
Étape 1.11
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.12
Annulez le facteur commun.
Étape 1.13
Réécrivez l’expression.
Étape 1.14
Évaluez la dérivée sur .
Étape 1.15
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.15.1
Un à n’importe quelle puissance est égal à un.
Étape 1.15.2
Divisez par .
Étape 2
Insérez les valeurs de pente et de point dans la formule point-pente et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez la pente et un point donné, tel que , pour remplacer et dans la forme point-pente , qui est dérivée de l’équation de la pente .
Étape 2.2
Simplifiez l’équation et conservez-la en forme point-pente.
Étape 2.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.2.2
Additionnez et .
Étape 3