Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Laissez . Déterminez .
Étape 1.1.1
Différenciez .
Étape 1.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.2
La dérivée de par rapport à est .
Étape 1.1.2.3
Remplacez toutes les occurrences de par .
Étape 1.1.3
Différenciez.
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Simplifiez l’expression.
Étape 1.1.3.3.1
Multipliez par .
Étape 1.1.3.3.2
Déplacez à gauche de .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
Simplifiez
Étape 1.3.1
Annulez le facteur commun de .
Étape 1.3.1.1
Factorisez à partir de .
Étape 1.3.1.2
Annulez le facteur commun.
Étape 1.3.1.3
Réécrivez l’expression.
Étape 1.3.2
La valeur exacte de est .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
Simplifiez
Étape 1.5.1
Annulez le facteur commun de .
Étape 1.5.1.1
Annulez le facteur commun.
Étape 1.5.1.2
Réécrivez l’expression.
Étape 1.5.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 1.5.3
La valeur exacte de est .
Étape 1.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 5
Étape 5.1
Évaluez sur et sur .
Étape 5.2
Simplifiez l’expression.
Étape 5.2.1
L’élévation de à toute puissance positive produit .
Étape 5.2.2
Multipliez par .
Étape 5.2.3
Soustrayez de .
Étape 5.3
Simplifiez
Étape 5.3.1
Multipliez par .
Étape 5.3.2
Multipliez par .
Étape 6
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :