Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de (4x)/(5(6x^2-7)^(2/3)) par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Additionnez et .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez par .
Étape 2.2
Multipliez par .
Étape 2.3
Factorisez à partir de .
Étape 2.4
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Factorisez à partir de .
Étape 2.4.2
Annulez le facteur commun.
Étape 2.4.3
Réécrivez l’expression.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 4.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Associez et .
Étape 4.2.2.2
Multipliez par .
Étape 4.2.3
Placez le signe moins devant la fraction.
Étape 5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réécrivez comme .
Étape 6.2
Réécrivez comme .
Étape 7
Remplacez toutes les occurrences de par .