Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de 3x^5 racine carrée de x^3+1 par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5
Additionnez et .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Simplifiez en annulant l’exposant avec un radical.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Utilisez pour réécrire comme .
Étape 2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.3
Associez et .
Étape 2.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.4.1
Annulez le facteur commun.
Étape 2.1.4.2
Réécrivez l’expression.
Étape 2.1.5
Simplifiez
Étape 2.2
Utilisez pour réécrire comme .
Étape 3
Développez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Élevez à la puissance .
Étape 3.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4
Écrivez comme une fraction avec un dénominateur commun.
Étape 3.5
Associez les numérateurs sur le dénominateur commun.
Étape 3.6
Additionnez et .
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Simplifiez
Étape 9
Remplacez toutes les occurrences de par .