Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de pi/4 à pi/3 de cos(x)sin(x) par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
La valeur exacte de est .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
La valeur exacte de est .
Étape 1.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4
Évaluez sur et sur .
Étape 5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.2
Additionnez et .
Étape 6
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :