Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Laissez . Déterminez .
Étape 1.1.1
Différenciez .
Étape 1.1.2
Différenciez.
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Soustrayez de .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Utilisez pour réécrire comme .
Étape 4
Étape 4.1
Laissez . Déterminez .
Étape 4.1.1
Différenciez .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Évaluez .
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Différenciez en utilisant la règle de la constante.
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Additionnez et .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Étape 6.1
Multipliez par .
Étape 6.2
Multipliez par .
Étape 7
Étape 7.1
Laissez . Déterminez .
Étape 7.1.1
Différenciez .
Étape 7.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 7.1.3
Évaluez .
Étape 7.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 7.1.3.3
Multipliez par .
Étape 7.1.4
Différenciez en utilisant la règle de la constante.
Étape 7.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 7.1.4.2
Additionnez et .
Étape 7.2
Réécrivez le problème en utilisant et .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Étape 9.1
Réécrivez comme .
Étape 9.2
Appliquez la propriété distributive.
Étape 9.3
Appliquez la propriété distributive.
Étape 9.4
Appliquez la propriété distributive.
Étape 9.5
Appliquez la propriété distributive.
Étape 9.6
Appliquez la propriété distributive.
Étape 9.7
Appliquez la propriété distributive.
Étape 9.8
Déplacez .
Étape 9.9
Déplacez .
Étape 9.10
Multipliez par .
Étape 9.11
Multipliez par .
Étape 9.12
Élevez à la puissance .
Étape 9.13
Élevez à la puissance .
Étape 9.14
Utilisez la règle de puissance pour associer des exposants.
Étape 9.15
Additionnez et .
Étape 9.16
Utilisez la règle de puissance pour associer des exposants.
Étape 9.17
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 9.18
Associez et .
Étape 9.19
Associez les numérateurs sur le dénominateur commun.
Étape 9.20
Simplifiez le numérateur.
Étape 9.20.1
Multipliez par .
Étape 9.20.2
Additionnez et .
Étape 9.21
Multipliez par .
Étape 9.22
Factorisez le signe négatif.
Étape 9.23
Élevez à la puissance .
Étape 9.24
Utilisez la règle de puissance pour associer des exposants.
Étape 9.25
Écrivez comme une fraction avec un dénominateur commun.
Étape 9.26
Associez les numérateurs sur le dénominateur commun.
Étape 9.27
Additionnez et .
Étape 9.28
Multipliez par .
Étape 9.29
Factorisez le signe négatif.
Étape 9.30
Élevez à la puissance .
Étape 9.31
Utilisez la règle de puissance pour associer des exposants.
Étape 9.32
Écrivez comme une fraction avec un dénominateur commun.
Étape 9.33
Associez les numérateurs sur le dénominateur commun.
Étape 9.34
Additionnez et .
Étape 9.35
Multipliez par .
Étape 9.36
Multipliez par .
Étape 9.37
Soustrayez de .
Étape 9.38
Remettez dans l’ordre et .
Étape 10
Séparez l’intégrale unique en plusieurs intégrales.
Étape 11
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 12
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 13
Étape 13.1
Associez et .
Étape 13.2
Associez et .
Étape 14
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 15
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 16
Étape 16.1
Associez et .
Étape 16.2
Simplifiez
Étape 17
Remettez les termes dans l’ordre.
Étape 18
Étape 18.1
Remplacez toutes les occurrences de par .
Étape 18.2
Remplacez toutes les occurrences de par .
Étape 18.3
Remplacez toutes les occurrences de par .