Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de (2x^3-2)/(x^4-4x) par rapport à x
Étape 1
Écrivez la fraction en utilisant la décomposition en fractions partielles.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Décomposez la fraction et multipliez par le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez la fraction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1.1
Factorisez à partir de .
Étape 1.1.1.1.2
Factorisez à partir de .
Étape 1.1.1.1.3
Factorisez à partir de .
Étape 1.1.1.2
Réécrivez comme .
Étape 1.1.1.3
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, et .
Étape 1.1.1.4
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.4.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.4.1.1
Multipliez par .
Étape 1.1.1.4.1.2
Un à n’importe quelle puissance est égal à un.
Étape 1.1.1.4.2
Supprimez les parenthèses inutiles.
Étape 1.1.1.5
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.5.1
Factorisez à partir de .
Étape 1.1.1.5.2
Factorisez à partir de .
Étape 1.1.1.5.3
Factorisez à partir de .
Étape 1.1.2
Pour chaque facteur dans le dénominateur, créez une nouvelle fraction en utilisant le facteur comme dénominateur et une valeur inconnue comme numérateur. Comme le facteur est du troisième degré, les termes sont requis dans le numérateur. Le nombre de termes requis dans le numérateur est toujours égal au degré du facteur dans le dénominateur.
Étape 1.1.3
Multipliez chaque fraction dans l’équation par le dénominateur de l’expression d’origine. Dans ce cas, le dénominateur est .
Étape 1.1.4
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1.1
Annulez le facteur commun.
Étape 1.1.4.1.2
Réécrivez l’expression.
Étape 1.1.4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.2.1
Annulez le facteur commun.
Étape 1.1.4.2.2
Divisez par .
Étape 1.1.4.3
Appliquez la propriété distributive.
Étape 1.1.4.4
Multipliez par .
Étape 1.1.5
Développez en multipliant chaque terme dans la première expression par chaque terme dans la deuxième expression.
Étape 1.1.6
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1.1.1
Déplacez .
Étape 1.1.6.1.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1.1.2.1
Élevez à la puissance .
Étape 1.1.6.1.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.6.1.1.3
Additionnez et .
Étape 1.1.6.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1.2.1
Déplacez .
Étape 1.1.6.1.2.2
Multipliez par .
Étape 1.1.6.1.3
Multipliez par .
Étape 1.1.6.1.4
Multipliez par .
Étape 1.1.6.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.2.1
Soustrayez de .
Étape 1.1.6.2.2
Additionnez et .
Étape 1.1.6.2.3
Soustrayez de .
Étape 1.1.6.2.4
Additionnez et .
Étape 1.1.7
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.1.1
Annulez le facteur commun.
Étape 1.1.7.1.2
Divisez par .
Étape 1.1.7.2
Appliquez la propriété distributive.
Étape 1.1.7.3
Déplacez à gauche de .
Étape 1.1.7.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.4.1
Annulez le facteur commun.
Étape 1.1.7.4.2
Divisez par .
Étape 1.1.7.5
Appliquez la propriété distributive.
Étape 1.1.7.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.6.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.6.1.1
Déplacez .
Étape 1.1.7.6.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.6.1.2.1
Élevez à la puissance .
Étape 1.1.7.6.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.1.7.6.1.3
Additionnez et .
Étape 1.1.7.6.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.7.6.2.1
Déplacez .
Étape 1.1.7.6.2.2
Multipliez par .
Étape 1.1.8
Déplacez .
Étape 1.2
Créez des équations pour les variables de fractions partielles et utilisez-les pour définir un système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.2
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.3
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients de de chaque côté de l’équation. Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.4
Créez une équation pour les variables de fractions partielles en faisant correspondre les coefficients des termes qui ne contiennent pas . Pour que l’équation soit égale, les coefficients équivalents de chaque côté de l’équation doivent être égaux.
Étape 1.2.5
Définissez le système d’équations pour déterminer les coefficients des fractions partielles.
Étape 1.3
Résolvez le système d’équations.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Réécrivez l’équation comme .
Étape 1.3.2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Réécrivez l’équation comme .
Étape 1.3.2.2
Réécrivez l’équation comme .
Étape 1.3.2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.3.1
Divisez chaque terme dans par .
Étape 1.3.2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.3.2.1.1
Annulez le facteur commun.
Étape 1.3.2.3.2.1.2
Divisez par .
Étape 1.3.2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.3.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.3.3.1.1
Factorisez à partir de .
Étape 1.3.2.3.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.3.3.1.2.1
Factorisez à partir de .
Étape 1.3.2.3.3.1.2.2
Annulez le facteur commun.
Étape 1.3.2.3.3.1.2.3
Réécrivez l’expression.
Étape 1.3.3
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Remplacez toutes les occurrences de dans par .
Étape 1.3.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.2.1
Supprimez les parenthèses.
Étape 1.3.4
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.1
Réécrivez l’équation comme .
Étape 1.3.4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.3.4.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.3.4.2.3
Associez et .
Étape 1.3.4.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.4.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.2.5.1
Multipliez par .
Étape 1.3.4.2.5.2
Soustrayez de .
Étape 1.3.5
Résolvez le système d’équations.
Étape 1.3.6
Indiquez toutes les solutions.
Étape 1.4
Remplacez chacun des coefficients de fractions partielles dans par les valeurs trouvées pour , , et .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Additionnez et .
Étape 1.5.1.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.2.1
Factorisez à partir de .
Étape 1.5.1.2.2
Factorisez à partir de .
Étape 1.5.1.2.3
Factorisez à partir de .
Étape 1.5.1.3
Associez et .
Étape 1.5.1.4
Additionnez et .
Étape 1.5.2
Associez et .
Étape 1.5.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.1
Élevez à la puissance .
Étape 1.5.3.2
Élevez à la puissance .
Étape 1.5.3.3
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.3.4
Additionnez et .
Étape 1.5.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.5
Multipliez par .
Étape 1.5.6
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5.7
Multipliez par .
Étape 2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Différenciez .
Étape 6.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 6.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.5
Additionnez et .
Étape 6.2
Réécrivez le problème en utilisant et .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez par .
Étape 7.2
Déplacez à gauche de .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Multipliez par .
Étape 9.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Factorisez à partir de .
Étape 9.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.2.1
Factorisez à partir de .
Étape 9.3.2.2
Annulez le facteur commun.
Étape 9.3.2.3
Réécrivez l’expression.
Étape 10
L’intégrale de par rapport à est .
Étape 11
Simplifiez
Étape 12
Remplacez toutes les occurrences de par .