Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de (x^3)/(x^2+1) par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.5
Additionnez et .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Utilisez pour réécrire comme .
Étape 2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.3
Associez et .
Étape 2.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.4.1
Annulez le facteur commun.
Étape 2.1.4.2
Réécrivez l’expression.
Étape 2.1.5
Simplifiez
Étape 2.2
Multipliez par .
Étape 2.3
Déplacez à gauche de .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Divisez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
+-
Étape 4.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
+-
Étape 4.3
Multipliez le nouveau terme du quotient par le diviseur.
+-
++
Étape 4.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
+-
--
Étape 4.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
+-
--
-
Étape 4.6
La réponse finale est le quotient plus le reste sur le diviseur.
Étape 5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 6
Appliquez la règle de la constante.
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
L’intégrale de par rapport à est .
Étape 9
Simplifiez
Étape 10
Remplacez toutes les occurrences de par .
Étape 11
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Appliquez la propriété distributive.
Étape 11.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Associez et .
Étape 11.2.2
Multipliez par .
Étape 11.2.3
Associez et .
Étape 11.3
Associez les numérateurs sur le dénominateur commun.
Étape 12
Remettez les termes dans l’ordre.