Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de 0 à pi/2 de cos((2x)/3) par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.4
Multipliez par .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Factorisez à partir de .
Étape 1.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.2.1
Factorisez à partir de .
Étape 1.3.1.2.2
Annulez le facteur commun.
Étape 1.3.1.2.3
Réécrivez l’expression.
Étape 1.3.1.2.4
Divisez par .
Étape 1.3.2
Multipliez par .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Associez et .
Étape 1.5.2
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1.1
Annulez le facteur commun.
Étape 1.5.2.1.2
Réécrivez l’expression.
Étape 1.5.2.2
Divisez par .
Étape 1.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez par la réciproque de la fraction pour diviser par .
Étape 2.2
Multipliez par .
Étape 2.3
Associez et .
Étape 2.4
Déplacez à gauche de .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Évaluez sur et sur .
Étape 5.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
La valeur exacte de est .
Étape 5.2.2
La valeur exacte de est .
Étape 5.2.3
Multipliez par .
Étape 5.2.4
Additionnez et .
Étape 5.2.5
Multipliez par .
Étape 5.2.6
Multipliez par .
Étape 6
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :