Calcul infinitésimal Exemples

Intégrer à l''aide d''un changement de variable intégrale de x racine carrée de 2x-1 par rapport à x
Étape 1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez .
Étape 1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Additionnez et .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Associez et .
Étape 2.2
Utilisez pour réécrire comme .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Multipliez par .
Étape 3.3
Élevez à la puissance .
Étape 3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.5
Écrivez comme une fraction avec un dénominateur commun.
Étape 3.6
Associez les numérateurs sur le dénominateur commun.
Étape 3.7
Additionnez et .
Étape 3.8
Multipliez par .
Étape 3.9
Multipliez par .
Étape 3.10
Multipliez par .
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez
Étape 9.2
Réécrivez comme .
Étape 9.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Multipliez par .
Étape 9.3.2
Multipliez par .
Étape 9.3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.3.3.1
Factorisez à partir de .
Étape 9.3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.3.2.1
Factorisez à partir de .
Étape 9.3.3.2.2
Annulez le facteur commun.
Étape 9.3.3.2.3
Réécrivez l’expression.
Étape 10
Remplacez toutes les occurrences de par .