Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Laissez . Déterminez .
Étape 1.1.1
Différenciez .
Étape 1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.3
Évaluez .
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3.3
Multipliez par .
Étape 1.1.4
Différenciez en utilisant la règle de la constante.
Étape 1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.4.2
Additionnez et .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Étape 2.1
Associez et .
Étape 2.2
Utilisez pour réécrire comme .
Étape 3
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Multipliez par .
Étape 3.3
Élevez à la puissance .
Étape 3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.5
Écrivez comme une fraction avec un dénominateur commun.
Étape 3.6
Associez les numérateurs sur le dénominateur commun.
Étape 3.7
Additionnez et .
Étape 3.8
Multipliez par .
Étape 3.9
Associez et .
Étape 3.10
Multipliez par .
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 10
Étape 10.1
Simplifiez
Étape 10.2
Réécrivez comme .
Étape 10.3
Simplifiez
Étape 10.3.1
Multipliez par .
Étape 10.3.2
Multipliez par .
Étape 10.3.3
Annulez le facteur commun à et .
Étape 10.3.3.1
Factorisez à partir de .
Étape 10.3.3.2
Annulez les facteurs communs.
Étape 10.3.3.2.1
Factorisez à partir de .
Étape 10.3.3.2.2
Annulez le facteur commun.
Étape 10.3.3.2.3
Réécrivez l’expression.
Étape 11
Remplacez toutes les occurrences de par .