Entrer un problème...
Calcul infinitésimal Exemples
Let
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.1.2.1.3
Remplacez toutes les occurrences de par .
Étape 1.1.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.6
Multipliez par .
Étape 1.1.2.7
Additionnez et .
Étape 1.1.2.8
Déplacez à gauche de .
Étape 1.1.3
Différenciez en utilisant la règle de la constante.
Étape 1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3.2
Additionnez et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 2.3
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 2.4
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Étape 3
Étape 3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 4
Le domaine du problème d’origine ne comprend aucune valeur de où la dérivée est ou indéfinie.
Aucun point critique n’a été trouvé