Calcul infinitésimal Exemples

Trouver la primitive (e^x+1)^2
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Appliquez la propriété distributive.
Étape 4.2.2
Appliquez la propriété distributive.
Étape 4.2.3
Appliquez la propriété distributive.
Étape 4.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.1.1.2
Additionnez et .
Étape 4.3.1.2
Multipliez par .
Étape 4.3.1.3
Multipliez par .
Étape 4.3.1.4
Multipliez par .
Étape 4.3.2
Additionnez et .
Étape 5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 6
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Différenciez .
Étape 6.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6.1.4
Multipliez par .
Étape 6.2
Réécrivez le problème en utilisant et .
Étape 7
Associez et .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
L’intégrale de par rapport à est .
Étape 10
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 11
L’intégrale de par rapport à est .
Étape 12
Appliquez la règle de la constante.
Étape 13
Simplifiez
Étape 14
Remplacez toutes les occurrences de par .
Étape 15
La réponse est la dérivée première de la fonction .