Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de -1 de (1- racine carrée de x^2+2x+2)/(1+x)
Étape 1
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.3
Placez la limite sous le radical.
Étape 1.1.2.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.5
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.2.6
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.1.2.7
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.8
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.8.1
Évaluez la limite de en insérant pour .
Étape 1.1.2.8.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.9
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.9.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.9.1.1
Élevez à la puissance .
Étape 1.1.2.9.1.2
Multipliez par .
Étape 1.1.2.9.1.3
Soustrayez de .
Étape 1.1.2.9.1.4
Additionnez et .
Étape 1.1.2.9.1.5
Toute racine de est .
Étape 1.1.2.9.1.6
Multipliez par .
Étape 1.1.2.9.2
Soustrayez de .
Étape 1.1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Soustrayez de .
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.1
Utilisez pour réécrire comme .
Étape 1.3.4.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.4.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.4.3.3
Remplacez toutes les occurrences de par .
Étape 1.3.4.4
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.4.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.4.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.4.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4.9
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.3.4.10
Associez et .
Étape 1.3.4.11
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.4.12
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.12.1
Multipliez par .
Étape 1.3.4.12.2
Soustrayez de .
Étape 1.3.4.13
Placez le signe moins devant la fraction.
Étape 1.3.4.14
Multipliez par .
Étape 1.3.4.15
Additionnez et .
Étape 1.3.4.16
Associez et .
Étape 1.3.4.17
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 1.3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Soustrayez de .
Étape 1.3.5.2
Réorganisez les facteurs de .
Étape 1.3.5.3
Appliquez la propriété distributive.
Étape 1.3.5.4
Multipliez par .
Étape 1.3.5.5
Multipliez par .
Étape 1.3.5.6
Multipliez par .
Étape 1.3.5.7
Factorisez à partir de .
Étape 1.3.5.8
Factorisez à partir de .
Étape 1.3.5.9
Factorisez à partir de .
Étape 1.3.5.10
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.10.1
Factorisez à partir de .
Étape 1.3.5.10.2
Annulez le facteur commun.
Étape 1.3.5.10.3
Réécrivez l’expression.
Étape 1.3.5.11
Factorisez à partir de .
Étape 1.3.5.12
Réécrivez comme .
Étape 1.3.5.13
Factorisez à partir de .
Étape 1.3.5.14
Réécrivez comme .
Étape 1.3.5.15
Placez le signe moins devant la fraction.
Étape 1.3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.7
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.9
Additionnez et .
Étape 1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5
Réécrivez comme .
Étape 1.6
Multipliez par .
Étape 2
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.5
Placez la limite sous le radical.
Étape 2.6
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.7
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 2.8
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.9
Évaluez la limite de qui est constante lorsque approche de .
Étape 3
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez la limite de en insérant pour .
Étape 3.2
Évaluez la limite de en insérant pour .
Étape 3.3
Évaluez la limite de en insérant pour .
Étape 4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Additionnez et .
Étape 4.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Élevez à la puissance .
Étape 4.2.2
Multipliez par .
Étape 4.2.3
Soustrayez de .
Étape 4.2.4
Additionnez et .
Étape 4.2.5
Toute racine de est .
Étape 4.3
Divisez par .
Étape 4.4
Multipliez par .