Calcul infinitésimal Exemples

Trouver la primitive f(x)=6/(5 racine carrée de 4x+2)+1/(cos(5x)^2)
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Convertissez de à .
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Différenciez .
Étape 6.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 6.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 6.1.3.3
Multipliez par .
Étape 6.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.4.2
Additionnez et .
Étape 6.2
Réécrivez le problème en utilisant et .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez par .
Étape 7.2
Déplacez à gauche de .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Multipliez par .
Étape 9.1.2
Multipliez par .
Étape 9.1.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.3.1
Factorisez à partir de .
Étape 9.1.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.3.2.1
Factorisez à partir de .
Étape 9.1.3.2.2
Annulez le facteur commun.
Étape 9.1.3.2.3
Réécrivez l’expression.
Étape 9.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Utilisez pour réécrire comme .
Étape 9.2.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 9.2.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 9.2.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 9.2.3.2
Associez et .
Étape 9.2.3.3
Placez le signe moins devant la fraction.
Étape 10
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 11
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Différenciez .
Étape 11.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 11.1.4
Multipliez par .
Étape 11.2
Réécrivez le problème en utilisant et .
Étape 12
Associez et .
Étape 13
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 14
Comme la dérivée de est , l’intégrale de est .
Étape 15
Simplifiez
Étape 16
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Remplacez toutes les occurrences de par .
Étape 16.2
Remplacez toutes les occurrences de par .
Étape 17
Remettez les termes dans l’ordre.
Étape 18
La réponse est la dérivée première de la fonction .