Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 1.3
Comme l’exposant approche de , la quantité approche de .
Étape 1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 5
Étape 5.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 5.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 5.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 5.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 5.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 5.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 5.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 5.3.1
Différenciez le numérateur et le dénominateur.
Étape 5.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 5.3.3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 6
Placez le terme hors de la limite car il est constant par rapport à .
Étape 7
Étape 7.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 7.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 7.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 7.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 7.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 7.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 7.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 7.3.1
Différenciez le numérateur et le dénominateur.
Étape 7.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 7.3.3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 8
Placez le terme hors de la limite car il est constant par rapport à .
Étape 9
Étape 9.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 9.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 9.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 9.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 9.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 9.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 9.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 9.3.1
Différenciez le numérateur et le dénominateur.
Étape 9.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 9.3.3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 10
Placez le terme hors de la limite car il est constant par rapport à .
Étape 11
Étape 11.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 11.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 11.1.2
La limite à l’infini d’un polynôme dont le coefficient directeur est positif à l’infini.
Étape 11.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 11.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 11.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 11.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 11.3.1
Différenciez le numérateur et le dénominateur.
Étape 11.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.3.3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 12
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 13
Étape 13.1
Multipliez par .
Étape 13.2
Multipliez par .
Étape 13.3
Multipliez par .
Étape 13.4
Multipliez par .