Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de 1 de (x logarithme népérien de x)/(x^2-1)
Étape 1
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Divisez la limite en utilisant la règle du produit des limites sur la limite lorsque approche de .
Étape 1.1.2.2
Placez la limite à l’intérieur du logarithme.
Étape 1.1.2.3
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.3.1
Évaluez la limite de en insérant pour .
Étape 1.1.2.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.4.1
Multipliez par .
Étape 1.1.2.4.2
Le logarithme naturel de est .
Étape 1.1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1.1
Un à n’importe quelle puissance est égal à un.
Étape 1.1.3.3.1.2
Multipliez par .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.3.3
La dérivée de par rapport à est .
Étape 1.3.4
Associez et .
Étape 1.3.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Annulez le facteur commun.
Étape 1.3.5.2
Réécrivez l’expression.
Étape 1.3.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.7
Multipliez par .
Étape 1.3.8
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.10
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.11
Additionnez et .
Étape 2
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.5
Placez la limite à l’intérieur du logarithme.
Étape 3
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez la limite de en insérant pour .
Étape 3.2
Évaluez la limite de en insérant pour .
Étape 4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Divisez par .
Étape 4.2
Le logarithme naturel de est .
Étape 4.3
Additionnez et .
Étape 4.4
Multipliez par .
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :