Calcul infinitésimal Exemples

Trouver la primitive (cos(x))/(sin(x)^5)
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez .
Étape 4.1.2
La dérivée de par rapport à est .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 5.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2.2
Multipliez par .
Étape 6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Réécrivez comme .
Étape 7.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Multipliez par .
Étape 7.2.2
Déplacez à gauche de .
Étape 8
Remplacez toutes les occurrences de par .
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Séparez les fractions.
Étape 9.3
Convertissez de à .
Étape 9.4
Multipliez par .
Étape 9.5
Associez et .
Étape 9.6
Remettez les termes dans l’ordre.
Étape 10
La réponse est la dérivée première de la fonction .